
CIRCUIT
CELLAR

®

w
w

w
.c

ir
c

u
it

c
e

lla
r

.c
o

m

T H E M A G A Z I N E F O R C O M P U T E R A P P L I C AT I O N S

$4.95 U.S. ($5.95 Canada)

#198 January 2007

EMBEDDED APPLICATIONS
Self-Powered Data Logger

Build an Arbitrary
Waveform Generator

New Uses for Flash
Memory

Voltage Solutions

cover1.qxp 12/1/2006 5:04 PM Page 1

C2.qxp 11/1/2006 10:32 AM Page 1

http://www.netburner.com

1.qxp 9/5/2006 2:33 PM Page 1

http://www.cypress.com/expressdemo
http://www.cypress.com/expresskit
http://www.cypress.com/expresstour
http://www.cypress.com/psocexpress
http://www.cypress.com/getexpress

Link Instruments

17A Daniel Road East · Fairfield, NJ 07004 · Fax (973) 808-8786

www.Linkins4.com

Link Instruments (973) 808-8990

PC-Based Test Equipment

• 2 Channel Digital Oscilloscope
• 500 MSa/s max single shot rate
• 1Mpt sample memory

250 MSa/S (Dual channel) 512 Kpts
500 MSa/S (Single channel) 1 Mpts

• Advanced Triggering
• Only 9 oz and 7” x 3.5” x 1.5”
• Portable and Battery powered
• USB 2.0
• Advanced Math
• FFT Spectrum Analyzer
• Priced at $950 Introductory Price $850

Logic Analyzers
• 40 to 160 channels
• up to 500 MSa/s
• Variable Threshold
• 8 External Clocks
• 16 Level Triggering
• up to 512K samples/ch
• USB 2.0 and Parallel Interface
• Pattern Generator option

LA5240 (200MHz, 40CH) $1700
LA5280 (200MHz, 80CH) $2350
LA5540 (500MHz, 40CH) $2500
LA5580 (500MHz, 80CH) $3500
LA55160 (500MHz, 160CH) $7500

Digital Oscilloscopes
NEW!

Windows
Screenshot

Windows Screenshot

500MSa/s
1Mpts

2.qxp 11/30/2006 10:03 AM Page 1

http://www.Linkins4.com

66.qxp 4/4/2006 3:34 PM Page 1

http://www.rabbitflex.com

4 Issue 198 January 2007 www.circuitcellar.comCIRCUIT CELLAR®

FOUNDER/EDITORIAL DIRECTOR
Steve Ciarcia

MANAGING EDITOR
C.J. Abate

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Jeff Bachiochi
Ingo Cyliax
Fred Eady
George Martin
Ed Nisley

NEW PRODUCTS EDITOR
John Gorsky

PROJECT EDITORS
Steve Bedford
Ken Davidson
David Tweed

ADVERTISING
860.875.2199 • Fax: 860.871.0411 • www.circuitcellar.com/advertise

PUBLISHER
Sean Donnelly
Direct: 860.872.3064, Cell: 860.930.4326, E-mail: sean@circuitcellar.com

ADVERTISING REPRESENTATIVE
Shannon Barraclough
Direct: 860.872.3064, E-mail: shannon@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster
E-mail: val.luster@circuitcellar.com

CONTACTS
SUBSCRIPTIONS

Information: www.circuitcellar.com/subscribe, E-mail: subscribe@circuitcellar.com
Subscribe: 800.269.6301, www.circuitcellar.com/subscribe, Circuit Cellar Subscriptions, P.O. Box 5650,
Hanover, NH 03755-5650
Address Changes/Problems: E-mail: subscribe@circuitcellar.com

GENERAL INFORMATION
860.875.2199, Fax: 860.871.0411, E-mail: info@circuitcellar.com
Editorial Office: Editor, Circuit Cellar, 4 Park St., Vernon, CT 06066, E-mail: editor@circuitcellar.com
New Products: New Products, Circuit Cellar, 4 Park St., Vernon, CT 06066, E-mail: newproducts@circuitcellar.com

AUTHORIZED REPRINTS INFORMATION
860.875.2199, E-mail: reprints@circuitcellar.com

AUTHORS
Authors’ e-mail addresses (when available) are included at the end of each article.

CIRCUIT CELLAR®, THE MAGAZINE FOR COMPUTER APPLICATIONS (ISSN 1528-0608) is published monthly by Circuit Cellar
Incorporated, 4 Park Street, Vernon, CT 06066. Periodical rates paid at Vernon, CT and additional offices. One-year (12 issues)
subscription rate USA and possessions $23.95, Canada/Mexico $34.95, all other countries $49.95.Two-year (24 issues) sub-
scription rate USA and possessions $43.95, Canada/Mexico $59.95, all other countries $85. All subscription orders payable in
U.S. funds only via Visa, MasterCard, international postal money order, or check drawn on U.S. bank. Direct subscription orders
and subscription-related questions to Circuit Cellar Subscriptions, P.O. Box 5650, Hanover, NH 03755-5650 or call
800.269.6301.

Postmaster: Send address changes to Circuit Cellar, Circulation Dept., P.O. Box 5650, Hanover, NH 03755-5650.

Circuit Cellar® makes no warranties and assumes no responsibility or liability of any kind for errors in these programs or schematics or for the
consequences of any such errors. Furthermore, because of possible variation in the quality and condition of materials and workmanship of read-
er-assembled projects, Circuit Cellar® disclaims any responsibility for the safe and proper function of reader-assembled projects based upon or
from plans, descriptions, or information published by Circuit Cellar®.

The information provided by Circuit Cellar® is for educational purposes. Circuit Cellar® makes no claims or warrants that readers have a right to
build things based upon these ideas under patent or other relevant intellectual property law in their jurisdiction, or that readers have a right to
construct or operate any of the devices described herein under the relevant patent or other intellectual property law of the reader’s jurisdiction.
The reader assumes any risk of infringement liability for constructing or operating such devices.

Entire contents copyright © 2006 by Circuit Cellar, Incorporated. All rights reserved. Circuit Cellar is a registered trademark of Circuit Cellar, Inc.
Reproduction of this publication in whole or in part without written consent from Circuit Cellar Inc. is prohibited.

CHIEF FINANCIAL OFFICER
Jeannette Ciarcia

MEDIA CONSULTANT
Dan Rodrigues

CUSTOMER SERVICE
Debbie Lavoie

CONTROLLER
Jeff Yanco

ART DIRECTOR
KC Prescott

GRAPHIC DESIGNER
Mary Turek

STAFF ENGINEER
John Gorsky

Cover photography by Chris Rakoczy—Rakoczy Photography
www.rakoczyphoto.com

PRINTED IN THE UNITED STATES

TASK MANAGER

When I was a student in London in 1998, I took an interesting sociolo-
gy course titled Political Processes and Social Change. In his opening lec-
ture, the course convener asked us a seemingly simple question: Is social
change driven by contingencies or by the actions of human agents? Ah,
yes, the old Agency vs. Contingency debate. Theorists who focus on the for-
mer tend to argue that individual actors such as Franklin D. Roosevelt,
Winston Churchill, and Albert Einstein move history. In contrast, proponents
of the latter theory argue that contingencies—such as pandemics and major
fluctuations in the international markets—drive change.

What do you think, particularly in terms of the path on which the embed-
ded community is traveling? Will the historians and social scientists of the
future argue that it was the work of a handful of individual agents—particu-
lar designers, researchers, programmers, and corporations—that drove
technological change, or will they write that various contingencies—such as
macroeconomic changes in the technology sector—had the most impact?

Considering such questions will help you figure out where you fit in the
puzzle. Do you believe a handful of engineers will develop the devices that
will change the technological landscape, or do you think that exogenous
social and economic forces will be main factors? Are you waiting for the next
Bill Gates or market crash to determine your access to new technologies
and your ability to design new systems?

Perhaps you should consider a completely different theory. The way we
see it here at Circuit Cellar, the collective spirit and effort of the design com-
munity will lead the way. No matter which technologies, personalities, and
socioeconomic variables (whether positive or negative) enter the formula for
progress, the design community will remain steadfast in its determination to
move forward and come up with novel ideas. If a young engineer develops
a groundbreaking technology, the community will use it to its advantage. If
the market should crash and hardware, software, and financial resources
suddenly become scarce, the members of the community will work togeth-
er to figure out ways around the problems. Sure, the speed at which the
community will develop new technologies will change every year, but it’s
unlikely that any one person or event will derail the train. Are you on board?

It’s exciting to see that many of you are now working harder than ever
to develop your ideas and present them to your peers. Moreover, we’re glad
that you are actively addressing the social and environmental issues that
are facing us in the 21st century. For instance, Abigail Krich, an enthusiastic
designer who recently graduated from Cornell University’s graduate pro-
gram in electrical engineering, describes how she built a self-powered solar
data logger (p. 12). She uses the system to measure solar insolation levels.
This project proves that all of you can design effective systems that better
the environment and society at large.

Columnist Jeff Bachiochi tackles another timely issue: alternative power
sources (p. 56). He provides you with some tips on leveraging the power of
“green” energy. Now is a great time to start thinking about the ways in which
you can make your designs more environment-friendly and power efficient.

One last note: We’re happy to announce the return of George Martin’s
Lessons From the Trenches column. This month, he begins a new series of
articles about C language (p. 60). His articles will appear every other month.

Agency vs. Contingency

cj@circuitcellar.com

198_masthead.qxp 12/5/2006 12:14 PM Page 4

http://www.circuitcellar.com/advertise
mailto:sean@circuitcellar.com
mailto:shannon@circuitcellar.com
mailto:val.luster@circuitcellar.com
http://www.rakoczyphoto.com
http://www.circuitcellar.com/subscribe
mailto:subscribe@circuitcellar.com
http://www.circuitcellar.com/subscribe
mailto:subscribe@circuitcellar.com
mailto:info@circuitcellar.com
mailto:editor@circuitcellar.com
mailto:newproducts@circuitcellar.com
mailto:reprints@circuitcellar.com
mailto:cj@circuitcellar.com
http://www.circuitcellar.com

5.qxp 11/30/2006 10:53 AM Page 1

http://www.america.renesas.com/ReachR8C/d

6 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

January 2007: Embedded Applications

4 TASK MANAGER
Agency vs. Contingency
C.J. Abate

8 NEW PRODUCT NEWS
edited by John Gorsky

93 CROSSWORD

FEATURES

DEPARTMENTS
94 INDEX OF ADVERTISERS

February Preview

96 PRIORITY INTERRUPT
For Want of a Paper Trail
Steve Ciarcia

50 APPLIED PCs
Dive Into the ZigBee Pool
An Easy Way to Start Moving Messages
Fred Eady

56 FROM THE BENCH
Green Energy
Jeff Bachiochi

60 LESSONS FROM THE TRENCHES
Hello World ... Want Cookie
George Martin

78 SILICON UPDATE
Hot Chips 18
Tom Cantrell

12 Self-Powered Solar Data Logger
Abigail Krich

20 QuickComs
An MC16C/62P-Based RS-232 Analyzer
Nick Lott

26 Atmel AVR Design Contest 2006 Winners Announcement

30 Multi-Input Temperature Logger
Nial Stewart

40 Arby
An Arbitrary Waveform Generator with a Twist
Dhananjay Gadre, Pushkar Sareen, Subodh Prabhu, & Suhas Chakravarty

46 Voltage Solutions
Harness the Power of Voltage Converters
Stuart Ball

67 The Power of Flash
Flash Memory Techniques for Your Toolbox
Mark Bereit

COLUMNS

Temperature Monitoring (p. 30)

What’s Hot? (p. 78)

Data Logger (p. 12)

Go Wireless (p. 50)

RS-232 Analyzer (p. 20)

198_toc.qxp 12/5/2006 12:16 PM Page 6

http://www.circuitcellar.com

Dream of Darkness,
Wasteman!

What can AVR picoPower
do for your design?

• True 1.8V supply voltage enabling operation of all features and core down to 1.8V

• Minimized leakage current enabling 100 nA Power Down sleep consumption

• Sleeping brown-out detector enabling full protection with no power penalty

• Ultra low power 32 kHz crystal oscillator enabling operation at only 650 nA

7.qxp 10/4/2006 1:48 PM Page 1

http://www.atmel.com/ad/picopower

8 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

NEW PRODUCT NEWS Edited by John Gorsky

SYSTEM ON MODULE INTERNET APPLIANCE
The SoM-NE64M is a 16-bit system on module (SoM)

based on the ColdFire MC9S12NE64 processor. This 16-
bit 68HC12-compatible processor has an Ethernet MAC
and PHY built-in along with two serial ports. It features
64 KB of flash memory, 32 KB of EEPROM, and 8 KB of
RAM. Another 512 KB of RAM can be added as an
option.

All of this functionality is incorporated on a board
smaller than a business card that uses less than 1 W of
power. Applications for the SoM-NE64 can be pro-
grammed using GNU tools within an Eclipse IDE. Alter-
natively, the SoM-NE64 can be programmed using Code-
Warrior.

Like other modules in the product line, the SoM-
NE64M is designed to plug into a carrier board contain-
ing all the connectors and any additional I/O compo-
nents that may be required. This approach allows the
design of a custom carrier board that meets the cus-
tomer’s I/O, dimensional, and connector requirements
without having to worry about the processor, memory,
and standard I/O functionality. Since the module itself
has more functionality built in than many other SoM
designs, the carrier board can be much easier to design
and produce, lowering cost and time to market.

In addition to the option of the developing a carrier
board, one can be purchased off-the-shelf. Off-the-shelf

carrier boards that feature A/D, D/A, MMC/SD card,
keypad, LCD, and modem interfaces are currently avail-
able. The SoM approach provides the flexibility of a fully
customized product at a greatly reduced cost.

The SoM-NE64M is ideal for any web/network data
acquisition and control application. The SoM-NE64M
costs $67.

EMAC, Inc.
www.emacinc.com

npn.qxp 12/5/2006 12:29 PM Page 8

http://www.emacinc.com
http://www.circuitcellar.com
http://www.arcom.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 9

NEW PRODUCT NEWS
NEW IM3000.X ARCHITECTURE-BASED MICROPROCESSORS

The IM3100, IM3300, and IM3900 are new processors based on the
IM3000.x architecture. Each version has application-specific soft
peripherals optimized for wired and wireless network applications.

This technology has three distinct advantages. Its reconfigurable
architecture allows new peripheral functions to be synthesized and
downloaded as microcode. Its field-programmable microcoded archi-
tecture allows the creation of custom instruction sets well suited for
mobile and data communications applications. This results in very
efficient, low-power operation. One version has been configured to
execute Java byte code and does so with unprecedented efficiency.
TCP/IP acceleration and encryption acceleration are included in the
existing configuration libraries.

The IM3100 addresses the 802.11 wireless VoIP handset and termi-
nal market with an integrated, narrowband, base band controller,
Skype voice CODEC, LCD controller, and media and touch screen
user interfaces.

The IM3300 enables the design of an optimized GPS positioning
unit for fleet management applications. The GPS base band processor
is implemented along with a number or serial and parallel I/O ports
for communication to local sensors and the communications unit.
The unit also incorporates an Ethernet controller.

The IM3900 is a general-purpose version that brings connectivity and
Java together for embedded applications. This configuration constitutes
a very efficient platform for program execution in assembly code, C,
and especially Java. Ethernet and a multitude of other serial channels
are available to provide a platform for communications protocol conver-

sions. The IM3900 implements a full Sun Micro-
systems certified Java ME–CLDC configuration.

Prices range from $12 to $15 in 10,000-piece
quantities. The pricing includes licenses for soft-
ware included in the basic chip configurations.

Imsys Technologies AB
www.imsystech.com

npn.qxp 12/5/2006 12:29 PM Page 9

http://www.imsystech.com
http://www.circuitcellar.com
http://www.tianma.com
http://www.maxstream.net

Visit www.circuitcellar.com/npn
for more New Product News.

10 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

NEW PRODUCT NEWS
SYSTEM ON MODULE WITH ULTRA-FAST LINUX BOOTUP

The TS-7400 is a small embedded
computer module (system on module)
that is designed to provide extreme
performance for applications which
demand high reliability, fast
bootup/startup, and connectivity at a
low cost and low power, such as
point-of-sales (PoS), vending
machines, data acquisition units, and
data recorder modules.

The module is based on the Cirrus
EP9302 ARM9 CPU, which provides a
standard set of on-board peripher-
als. The EP9302 features an
advanced ARM920T 200-MHz
processor design with MMU.
The TS-7400 includes a stan-
dard SD Card socket and a 40-
pin header that brings out many
interfaces, including audio,
GPIO, and ADC. In addition, an
one-piece setup with 802.11g Wi-Fi
integrated inside a rugged enclosure
is available, making this solution
ideal for use in wireless sensor net-
work, data acquisition/recorder appli-
cations, PoS, vehicle telemetry trans-

Technologic Systems, Inc.
www.embeddedarm.com

mitter units, and more.
The TS-7400 has a tweaked boot-up

firmware and Kernel that, along with
the hardware accelerated NAND con-
troller and hardware ECC, enables
ultra-fast bootup to a Linux shell
prompt in 1.1 s. The TS-4700
costs $99 each in 100-
piece quantities.

npn.qxp 12/5/2006 12:30 PM Page 10

http://www.circuitcellar.com/npn
http://www.embeddedarm.com
http://www.circuitcellar.com
http://www.protoexpress.com
http://www.elprotronic.com

2,500 NEW

NATIONAL SEMI
PARTS

5,000 NEW

A M P
PARTS

2,500 NEW

M A X I M
PARTS

The industry’s fastest
growing product offering!
You know that Jameco’s catalog
always offers over 99% in-stock
availability—the best of any elec-
tronic components distributor...

And now, they have the
fastest growing product offering
in the industry!

They’ve just added another
65,000 new parts to their online
catalog; and it’s everything
from ICs to passives, optos to
interconnects, power supplies
to electromechanical.

Service & Availability!
As Design Engineers
know, Jameco offers great
service, selection and
same-day shipping!

Now you can get those
same benefits for even
more great brands...

Wow! Jameco just added 65,000
new major-brand products!

19,000 NEW
T E X A S

I N S T R U M E N T S
PARTS

2,900 NEW
V I S H AY

PARTS

6,200 NEW

FAIRCHILD
PARTS

7,200 NEW

FREESCALE
PARTS

2,800 NEW
MICROCHIP

PARTS

Check out these new
and expanded lines:

Aavid Thermalloy •
Alcoswitch • AMP •

Amphenol Connex •
Atmel • Augat • AVX •

Bourns • Buchanan •
Comair Rotron • Condor Power

Supplies • CTS • Cypress • Dallas
Semiconductor • Fairchild • Freescale

Semiconductor • Grayhill • Intel •
Intersil • ITT • C&K Switches •

Lattice Semiconductor • Lite-
On • Maxim • Microchip •

Micron Technology • Molex •
National Semiconductor •

Panasonic • Philips •
Power-One • Raychem •

Renesas Technology •
Sandisk • ST Micro • Texas

Instruments • Toshiba •
Tyco Electronics • Vishay

Intertechnology...

Get it here. Right now:

3,000 NEW
AV X
PARTS

G r e a t P r o d u c t s .
A w e s o m e P r i c e s .

Jameco.com/CCU

63.qxp 10/26/2006 11:10 AM Page 1

http://www.jameco.com/CCU

12 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

tured an ATmega32 microcontroller.
You can leave the logger (untouched
and isolated) in the field to collect
data for months or years.

SYSTEM OVERVIEW
The solar-powered data logger features

a photodiode that measures solar insola-
tion levels and converts this analog signal
to a digital value that’s stored in flash
memory. Every time the system logs a
data point it also logs a time and date
stamp so that the data can be downloaded
to a PC and analyzed in the future.

When the system is logging, real-
time data is displayed on its small LCD
screen. The system displays several use-
ful bits of information: the battery’s
voltage, the time and date, the length of
time the system has been logging, and
the length of time it can continue to
log before running out of memory.

The logger has a dedicated solar
power system that enables
autonomous operation. A simple
charge controller regulates the charg-
ing of a sealed battery (gel cell lead
acid) by a small solar panel.

APPLICATIONS
When planning an off-grid solar elec-

On a seemingly rare sunny day in
Ithaca, New York, the sun delivers
about 1,000 W of power per square
meter and just begs to be put to some
purpose besides browning the backs of
the students lying out in the gorges.
At up to 15% conversion efficiency,
COTS photovoltaics (PVs) can turn that
light into electricity. A growing number
of Ithacans have heeded the sun’s call
and installed solar electric PV systems
to power their homes and businesses.
Ithaca may get 40% less solar insolation
than San Diego, but it gets 25% more
than Germany, the world leader in
installed PV capacity. Tompkins County,
where Ithaca is located, has roughly
2.9 W of installed solar capacity per
person, which makes it second in the
U.S. to only Palo Alto, California.

With the Finger Lakes, ridgelines,
and valleys cutting through the region,
clouds and fog levels vary significantly
from one part of town to another. But
weather data is only available from a
few select locations. How is a potential
PV buyer to know how much power her
system will produce unless they can
measure the incoming light? And how
can a proud PV owner know how her sys-
tem is performing or detect faults unless
she can confirm the conversion effi-
ciency? Expensive commercial data log-
ging systems that cost thousands of dol-
lars do this well, but they are entirely
unreasonable for the small system owner.

For Bruce Land’s ECE476 Microcon-
troller Design course at Cornell Uni-
versity (http://instruct1.cit.cornell.edu
/courses/ee476/), I designed an inexpen-
sive self-powered solar data logger to
meet this need (see Photo 1). I built
the system around an Atmel AVR
STK500 development board that fea-

tric power system (one that isn’t con-
nected to a larger power grid), the out-
put must be matched closely with the
load in order to provide sufficient power
without considerable waste. Although
the price of photovoltaics has dropped
by almost fivefold in my lifetime, it is
still quite expensive.[1] Good planning
and system design ensure that you can
provide sufficient power without having
to buy more PV than necessary.

The power output from photo-
voltaics is directly related to the inso-
lation level. Although seasonal and
annual average insolation levels for
most major U.S. cities are available on
the Internet, cloud cover and other
weather effects can be extremely
localized depending on the topogra-
phy. Thus, the data for large cities
isn’t always the same as the data for
the smaller towns in its vicinity. In
addition, this data is not available for
every part of the world. While accu-
rate predictions of power output are
important for grid-tied solar electric
systems (in which the grid is used as
‘storage’ for any excess electricity pro-
duced and drawn upon for any elec-
tricity shortfall), this mainly impacts
the return on investment expectations
rather than the system sizing.

PV power systems are the only
devices currently available for generat-
ing electricity without any moving
parts. This makes them brilliantly
simple and easy to care for, which is a
real benefit for homeowners who do
not want to spend their weekends
greasing bearings and performing regu-
lar system checks. But without any
maintenance needs or means for visual
inspection, it is easy for system faults
to go undetected for quite some time.

FEATURE ARTICLE by Abigail Krich

Self-Powered Solar Data Logger
Abigail designed a microcontroller-based, self-powered solar data logger that uses a photo-
diode to measure solar insolation levels. The system converts the analog signal to a digital
value that’s stored in flash memory.

Photo 1—Check out the complete solar data logger
system with the PV panel, battery, and a mess of wires.

2712014krich.qxp 12/5/2006 11:41 AM Page 12

http://instruct1.cit.cornell.edu/courses/ee476
http://instruct1.cit.cornell.edu/courses/ee476
http://www.circuitcellar.com

Large commercial PV installa-
tions typically have sophisticated
sensors and monitoring software
that can detect system faults and
activate an alarm when mainte-
nance is needed. These features
are usually too costly for residen-
tial sized PV systems. The central
component of these monitoring
systems is an insolation sensor
whose output is compared with
system power production. When
the power production strays sig-
nificantly from what would be
expected given the insolation, an
alarm is triggered and maintenance
checks can be performed. Although
you may not need a fully automated,
integrated monitoring system, some
means for determining your PV sys-
tem’s efficiency enables you to per-
form maintenance only when it’s nec-
essary and to have peace of mind at
other times that everything is func-
tioning properly.

HARDWARE
The system schematic is shown in

Figure 1. The pins of the STK500
board are depicted along the bottom.
Note that the RXD and TXD pins for
the RS-232 connection and the data
flash are also located on the board.

Port A connects to the photodiode
and the switches. Port B also connects
with the switches as well as the data
flash. Port C controls the LCD and
Port D sends data to the RS-232 con-
nection and the field effect transistor.
These ports connect to the ATmega32
microcontroller.

POWER SUPPLY
The logger has a dedicated solar-

charging system to enable for
autonomous operation. It was built
around a 3.2-W solar panel a Volkswa-
gen dealer gave me to accessorize the
originally diesel-fueled Volkswagen
Golf TDI that I bought and converted
to run on vegetable oil. But that car is
another story.

Even without much optimization for
efficiency, the power needs of the logger
are very small. The maximum power
drawn by each of the main components
is 5 mW for the LCD, 75 mW for the
ATmega32, and 75 mW for the photo-

diode for a total of 155 mW. If all com-
ponents run at maximum power at all
times, this would amount to 3.72
Wh/day. This does not account for
losses in the voltage regulator or other
minor components, but there is plenty
of energy available for the system so
this is not a problem.

The battery I chose was a 12-V, 5-Ah
sealed gel cell lead acid deep cycle bat-
tery. This type of battery is the most
cost effective when size and weight
are not a concern, but safety, ease of
handling, and the ability to deep-cycle
the battery are. Although a 12-V, 5-Ah
battery could provide 60 Wh, draining
any battery too low (even a deep cycle
battery) can cause damage. Five days of
energy storage in Ithaca is considered
conservative, but due to the reliability
needs of an autonomous system such as
this, it is worth having a good factor of
safety. Note that 37 Wh of useful stor-
age enables the system to ride through
10 days with no sun, giving plenty of
leeway with the battery chosen.

Even with enough storage, it is nec-
essary to be sure that the energy bal-
ance of the system is kept positive or
the battery will eventually drain. Itha-
ca averages 2.3 sun hours per day in
the winter.[2] What this means is that a
solar cell rated at 1 W would produce
1 Wh of electricity per sun hour. My
3.2-W solar panel would therefore be
able to produce 7.4 Wh (on average) of
electricity per day during the darkest
time of year in Ithaca if kept at its
maximum power point. Because there
is no maximum power point tracking
in this system, it can be expected
that the panel will produce about 5.2
Wh per day in the winter, which still

far exceeds the maximum load
expected.

The PV panel, which is rated at
18.8 V at its maximum power
point, was designed for trickle
charging a 12-V car battery and so
could be directly connected to the
data logger. However, to prevent
battery damage from overcharg-
ing, I needed a way to disconnect
the panel once the battery was
fully charged. Using a BUZ71
field effect transistor and a polling
routine, the panel was effectively
disconnected when the battery

voltage rose above 12 V.
Depending upon the state of charge,

the battery voltage will float around
12 V but will not remain steady. The
logger components required a constant
5-V power supply. The ON Semicon-
ductor LM2574, a 0.5-A, 5-V step
down switching regulator (buck con-
verter) regulates the voltage from the
battery to the level needed for the sys-
tem components (see Photo 2). This
regulator has a typical efficiency of
72%, which is much higher than
resistance-based voltage regulation.

An unresolved and bizarre result of
running the logger off of the solar
power supply as compared to the stan-
dard AC/DC power supply was that
the on-off switch on the STK500
ceased to function. The only way to
turn the logger on or off when con-
nected to the solar power supply was
to actually disconnect a battery lead.

PHOTOSENSOR
A Texas Instruments OPT101—a

monolithic photodiode and single-sup-
ply transimpedance amplifier—is used
to sense the incoming solar insolation
level. Natural sunlight ranges in
intensity from 0 to approximately
1,000 W per square meter, but the
OPT101 puts out its maximum volt-
age at roughly 10 W per square meter
of incident insolation. With hardly any
light striking the sensor, it reached its
upper limit. It was thus necessary to
attenuate the intensity of the light
striking the photodiode to increase the
range over which the sensor could dif-
ferentiate intensity.

Ideally, this would have been done
with neutral density filters, but I didn’t

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 13

Photo 2—The LM2574 step-down switching regulator maintains the
voltage supply to the logger at 5 V.

2712014krich.qxp 12/5/2006 11:41 AM Page 13

http://www.circuitcellar.com

14 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

have any on hand. I used the next best
scientifically accurate and available
tool: electrical tape. Two layers of
electrical tape covering the photodi-
ode were found to be quite effective.
This solution enabled the sensor to
give reasonably reliable readings over
the full range of expected intensities
(see Photo 3).

The microcontroller’s ADC has a
maximum value of 255. Multiplying
by a factor of four roughly converted
the ADC reading to watts per square
meter. Ideally, this system would be
calibrated and the factor would be
more precise than four, but this
approximation gave reasonable
results with a range of readings from
0 to 1,020 W per square meter.

I used the ATmega32-based
STK500 development board because
of its integral flash memory and
switches. However, if this system
were commercialized or rebuilt, it is
fairly obvious that the STK500 would
not necessarily be used. It has many
features that are unnecessary for this
project. A far simpler and more com-

pact board can be designed.

PROGRAM
An interrupt-driven program runs

the system and enables accurate tim-
ing. An interrupt service routine
decrements a series of task timers
once per millisecond. The main task

in the program calls various subrou-
tines at predetermined intervals when
their task timers run out and the
appropriate flags are set to enable a
task to run. Each of the eight buttons
is polled separately once every 30 ms
with a state machine to debounce the
button as it stabilizes after a transi-

Figure 1—The system’s schematic shows the STK500 and its connections with each of the other components.

2712014krich.qxp 12/5/2006 11:41 AM Page 14

http://www.circuitcellar.com
http://www.arcturusnetworks.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 15

tion. The only button that is
not debounced is the LCD Wake
button because bouncing is not a
concern with this function. The
debouncing routine is based on
code written by Bruce Land.

Each time the system is
turned on or reset, it welcomes
the user and guides her through
the set-up process (see Photo 4).
During set-up, you set the sys-
tem time and date, select the
logging frequency, decide
whether to clear any stored data
or to continue by appending
future data, and indicate when
to actually begin logging after
the system is in place.

In order to enable data appending
after a reset, the memory pointers
have to be stored in nonvolatile mem-
ory and initialized only when the chip
is programmed, not each time the sys-
tem is reset. The ATmega32 contains
1,024 bytes of data EEPROM memory
organized as a separate data space in
which single bytes can be read and
written. The pointers to the flash

memory as well as a log of how long
the system has been logging are kept
in EEPROM. During operation, you
can reset the time if needed or change
the logging frequency without inter-
rupting the data collection. If the log-
ging frequency were changed, it would
be impossible to calculate how long
the system had been logging unless a
running tally had been kept.

A series of flags and state machines

are used throughout the pro-
gram to prevent erroneous user
input from activating a section
of code out of order. At any
given point in the program, only
the relevant buttons are active
and their functions change as
shown in the button labels in
Photo 5.

The battery voltage and the
photodiode output are fed into
two channels of the ATmega32’s
ADC. The ADC has a maxi-
mum input of 5 V. So, in order
to read the battery voltage, it
was necessary to use a voltage
divider to guarantee that the

input to the ADC was within range.
Initially, the system sampled only the
light level with the frequency at
which the user wanted data stored.
However, with logging frequencies of
1 min. to 1 h, this did not allow for a
satisfying real-time display that
showed changes in light intensity.
Moreover, it allowed less accuracy if
only one sample was taken per stored
data point. Instead, the final design

Photo 3—The photosensor is covered with two layers of electrical tape to
provide a larger range of sensitivity. The inset shows the sensor without
the tape cover.

2712014krich.qxp 12/5/2006 11:41 AM Page 15

http://www.circuitcellar.com
http://www.pcb-pool.com

16 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

reads the ADC once per second
through a task that enables an ADC
interrupt routine and starts a conver-
sion. The ADC interrupt automatical-
ly switches between the two channels
for the photodiode and the battery
voltage, reading the battery voltage
once for every five times the photodi-
ode is read.

To get an accurate battery voltage
reading, the PV panel is disconnected
just before the reading is taken and
then reconnected immediately after if
the battery voltage is below 13 V. If it
is at 13 or above, the PV panel is not
reconnected to prevent overcharging.

The instantaneous readings are dis-
played to the LCD screen and kept in a
running average over the logging interval.
When the logging interval is complete, a
data point is stored in the flash memo-
ry and the running average is cleared.

To be able to run for a useful length
of time, the data logger needed an
external memory for storing measured
data. The older STK500 boards have
flash memory chips built into them
(as can be seen on the upper right of
the board in Photo 5), making this an
obvious choice. Unfortunately, I did
not have any instruction set for inter-
facing with the flash memory. An ear-
lier ECE476 project used this flash
memory. Based on the project’s code
and comments, I was able to learn
how the flash memory interface
worked.[3] The designers used a pro-
gram named dFlash, which was writ-
ten by Terje Frostad of Atmel Norway.
I e-mailed the Atmel AVR technical
support team and received permission
to use dFlash in my project as well.
The dFlash program provides a set of
routines to interface with the flash
memory by writing to a 264-byte
buffer. This buffer is then written to

one of 1,024 264-byte pages of the
flash memory.

Because the routines take byte-size
data as input, I had to break the inso-
lation value (stored as an integer) into
2 bytes and then put it back together
again when storing or retrieving it.
The 2-byte insolation together with
the time and date stamp meant that
each time the system logged a data
point it used 8 bytes of memory. This
allowed the system to log 33,792 data
points. The logging interval is user-selec-
table from 1 min. to 1 h. At an interval
of 1 min., the system is able to continu-
ously log data for 23.4 days before filling
the memory. At an interval of 1 h, the
system is able to log for 3.8 years.

One thing I did not realize that caused
me a considerable headache was that
PortB.4:7 is used for interfacing with the
flash. I had initially been using PortB as
input for the switches, but I found that
three of the switches ceased functioning
properly. When I realized that dFlash
was reinitializing these pins, I was able
to switch these buttons to PortA.

The flash memory can be read
either through a buffer or directly, the
latter being my choice for the logger.
If you were to call for the data to be
retrieved before the buffer had filled
and written the data to flash, there
would be no data to retrieve. Thus, it
was necessary to write the buffer to
flash memory just before the data
retrieve routine was entered as well as
when the buffer became full. It was also
necessary to give the microcontroller a
brief period to finish writing the buffer
before the read command was executed
or the same problem would occur.

The read command is executed
when you press the Retrieve Data but-
ton (active only when the logger is
stopped). The logger must be connect-
ed to a computer using an RS-232
cable with straight-through connec-
tion. You should start a simple termi-
nal program on the PC (e.g., HyperTer-
minal) set to 9,600 bps, no parity, 1
stop bit, and no flow control.

When the Retrieve Data button is
pressed, the system prints identifying
header rows followed by a row for
each data point logged with the time
and date at which it was stored. The
LCD displays the message “Uploading

Photo 4—The data logger greets users before leading
them through the system setup.

�������	�
���

�����

Available in 40 and 44 pin header configuration

Support PIO 0-4 and Ultra DMA 3 mode.

Bootable from Transflash/micro SD.

Low power consumption.

SD-IDE-40/44

6V to 40V DC input range

+5V, +12V, -5V and -12V DC output

High efficiency up to 95%

PC/104 compliant

HE104-DX

Fanless Design

Intel® ULV Celeron® 650MHz Processor

1 PCI (optional 2nd PCI)/ 2 PCMCIA Slots

Wide Range DC or AC Power Input

Advanced Fanless Embedded Controller

IDE Flash Drive Carrier Board with Micro SD Interface

60 Watt High Efficiency PC/104 PSU

AEC-6900

1.800.665.5600
www.tri-m.com info@tri-m.com

tel: 604.945.9565 fax: 604.945.9566
HEAD OFFICE: VANCOUVER

2712014krich.qxp 12/5/2006 11:41 AM Page 16

http://www.tri-m.com
mailto:info@tri-m.com
http://www.circuitcellar.com

DESIGN
STELLARIS
2006

Challenge yourself against other top
embedded engineers around the world in

DesignStellaris2006, proudly sponsored by
Luminary Micro, Keil, and Circuit Cellar.

Use any microcontroller in Luminary Micro’s
Stellaris™ family of ARM® Cortex™- M3 controllers with the

ARM RealView® Microcontroller Development Kit
(MDK-ARM) to create your design contest entry,

and see how far your design will take you!

www.LuminaryMicro.com/DesignStellaris2006

DESIGN
STELLARIS
2006

• No purchase necessary to enter.

• $10,000 in cash prizes!

• Entry deadline is February 7, 2007.

• Winners will be announced at the
Embedded Systems show...
Silicon Valley 2007.

• Submit your design today!

FOR COMPLETE DETAILS, VISIT
www.LuminaryMicro.com/
DesignStellaris2006

[]
LUMINARY MICRO

LM3S811 EVALUATION KIT

Visit our website
for more information!

THE LM3S811 EVALUATION KIT includes
the Stellaris LM3S811 Evaluation Board, an evalua-
tion copy of MDK-ARM, USB cable, documentation,
and programming examples.

2.qxp 10/5/2006 9:06 AM Page 1

http://www.LuminaryMicro.com/DesignStellaris2006
http://www.LuminaryMicro.com

18 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

Data” followed by the time and insola-
tion value presently being uploaded.
Upon reaching the end of the data, a
footer row is printed to the terminal pro-
gram and the LCD displays the message
“Done Uploading Please Restart.” The
data in the terminal program on the PC
may then be copied into another pro-
gram for storage or analysis. If an incom-
plete transmission was made, you may
reset the logger and choose to upload the
data at the first prompt. The data may
be uploaded as many times as the user
desires until the memory is cleared.

Initially, the program was written
with each of the subroutines that
updated a parameter sending its update
to the LCD. This avoided updating the
LCD more frequently than necessary.
However, when power-saving code was
incorporated to turn the LCD screen
off when the system was idle by driv-
ing it with a port pin, the system
would freeze every time it went idle. It
turns out that the LCD sends and
receives messages to and from the
microcontroller. If the LCD is off when
the microcontroller sends it a message,

it is not able to respond and the micro-
controller hangs, waiting. The program
thus had to be rewritten to prevent the
LCD from being called when the LCD
screen was turned off. I did this by
writing a single routine that printed to
the LCD screen. A state machine and a

variety of flags controlled it so that the
correct message would be displayed.

Additionally, there was some diffi-
culty at times with the LCD not mak-
ing proper contact with the surplus
whiteboard I was using. When the
LCD lost contact momentarily, it
would cause the system to freeze.
Thus, I added an extra new whiteboard
solely to hold the LCD screen securely
because I was not able to solder the
borrowed LCD to my project. Another
problem I had with the LCD was
when the STK ground was not properly
connected to the system ground, the
negative terminal of the battery. This
happened during testing with the
STK500 plugged into an AC/DC power
supply. When the two grounds were
not at equal voltages, the voltage
across the LCD was not in its operating
range. The positive voltage was coming
from the STK port pin and the negative
voltage from the battery negative ter-
minal. Once the two systems were
joined by connecting to the STK
ground pin (or also powering the STK
from the battery), the LCD resumed

Photo 5—Check out the STK500 board with labels for
each of the eight buttons.

2712014krich.qxp 12/5/2006 1:58 PM Page 18

http://www.circuitcellar.com
http://www.rabbit4000.com
http://www.keil.com/xd

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 19

REFERENCES
[1] R. Wiser, M. Bolinger, P. Cappers, and

R. Margolis, “Letting the Sun Shine
on Solar Costs: An Empirical Investi-
gation of Photovoltaic Cost Trends in
California,” LBNL-59282, NREL/TP-
620-39300, 2006, http://eetd.lbl.gov/ea
/ems/reports/59282.pdf.

[2] Solar Insolation for Major U.S. Cities,
Advanced Energy Group, www.solar4
power.com/solar-power-insolation-
window.html.

RESOURCE
Datasheets, dFlash.c, and the User
Guide, http://instruct1.cit.cornell.edu
/courses/ee476/FinalProjects/s2006/
ajk28/ajk28/index.html.

Abigail Krich (ajk28@cornell.edu)
holds a B.S. in biological and environ-
mental engineering and a Master’s
degree in electrical engineering from
Cornell University. She is now a proj-
ect developer at Tamarack Energy, a
renewable energy development compa-
ny. She has previously worked at the
National Renewable Energy Laborato-
ry’s National Wind Technology Center
and at Northern Power Systems.

PROJECT FILES
To download the code, go to ftp://ftp.
circuitcellar.com/pub/Circuit_Cellar
/2007/198.

[3] S. Jean-Louis and C. Pandarinath,
“The Big Red Guide,” ECE476
Final Design Project, Cornell Uni-
versity, 2004, http://instruct1.cit.
cornell.edu/courses/ee476/Final
Projects/s2004/sj74/main.htm.

normal operation.

IMPROVEMENTS
If I rebuild this system for fun or

commercialization, it will need to be
packaged in a weatherproof enclosure
to allow for outdoor operation. Addition-
ally, since not everyone has a spare PV
panel lying around the house, it would be
important to increase the system’s effi-
ciency to allow for a reduced panel size
because this is the most expensive com-
ponent. This can be done in many ways.

The first way would be to have a
maximum power point tracking charge
controller rather than the simple on-off
switch used in this project. This would
keep the voltage of the solar cells at
the maximum power point on the I-V
curve. It would effectively extract
about 30% more power from the panel
than allowing the battery to determine
the panel’s operating voltage. The sec-
ond way to improve efficiency would
be to reduce the power consumption of
the system. Because I had plenty of
power from my PV panel and sufficient
battery capacity, there was no need for
this system to do more than turn the
LCD screen off when idle. However, it
would be possible to reduce power
needs further by reducing the chip’s
clock speed, letting the chip go idle
between readings or at night, and elim-
inating the LEDs on the STK500 board
or using another board entirely.

The sun was shining in my eyes as I
started working on this article last
summer. I think I’ll soon have to join
the fold and get a PV system of my
own to go with the logger. I

2712014krich.qxp 12/5/2006 11:41 AM Page 19

http://eetd.lbl.gov/ea/ems/reports/59282.pdf
http://www.solar4power.com/solar-power-insolation-window.html
http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/s2004/sj74/main.htm
http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/s2006/ajk28/ajk28/index.html
mailto:ajk28@cornell.edu
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2007/198
http://www.circuitcellar.com
http://www.expresspcb.com

20 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

some of the fun out it. These are some
of the reasons why I designed the
QuickComs prototype.

With RS-232 quickly being replaced
by USB, I hope the nightmare of incor-
rectly wired appliances and forgotten
data rates will be a thing of the past.
Unfortunately, RS-232 will still be
with us for a long time to come, and
as it becomes used less frequently, the
exact parity and data rates for devices
will be easily forgotten.

QuickComs PROJECT
QuickComs is a useful M16C/62P

microcontroller-based system that can
be connected to an RS-232 device to
determine the correct wiring, data rate,
and encoding scheme. It can be used to
monitor a serial link as well as act as an
automatic null modem cable. Quick-
Coms can be inserted inline to a serial
link or connected to a single device.

This project should be useful to any-
one who often works with older scien-
tific or industrial equipment. You’ll
also find it useful if you need to quick-

The inspiration for this project
came from various sources and situa-
tions, including my own debugging of
old lab equipment, the need to quickly
diagnose a broken serial link in a
microcontroller system during the
design phase, the need to quickly
debug student designs in a teaching
lab environment, and the need to
assist those without an oscilloscope to
determine the communication param-
eters of old equipment.

A few years ago, a friend of mine
who was developing front-end systems
for databases was given a project that
needed to communicate with some
electronic scales. He was given scales
and cables, but that was it: no data
rates, parity bits, or stop bit informa-
tion. I was asked if there was an easy
way to determine the device’s com-
munication settings. I asked if he had
a scope. “A what?” was the reply.
Eventually, he figured out by trial and
error that the device used 1200-7e1. I
thought there should be a better way.

For me, figuring out the exact data
rate and encoding and wiring scheme
for the serial connection on that really
old piece of equipment at the back of
the lab has always been part of the fun
and challenge of being an electronics
technician. But then again, not every-
one can just run off and grab an oscil-
loscope or logic analyzer and come up
with an answer. Sometimes having to
repeat the process 10 times in a single
lab session as students learn the ins
and outs of working with microcon-
trollers can be a bit tedious and take

ly troubleshoot a serial connection in
a microcontroller system. It has
already proved useful for quickly
revealing situations in which the sys-
tem or UART clock was running at an
unexpected speed. This is fantastic in
a teaching lab when a student’s bread-
board circuit doesn’t work the first
time. If you don’t have an oscillo-
scope, this system gives you the power
to determine the communication
parameters of equipment. You don’t
need to have an in-depth understanding
of the technology. It’s a turnkey solu-
tion for the front-end developer.

As you can see in Photo 1, the cur-
rent design is only a prototype. As such,
it isn’t as portable as a commercial prod-
uct (nor is it as pleasing to look at). But I
imagine it would be quite straightfor-
ward to take this design and optimize it
for commercial production in a package
not much larger than a standard deck of
cards (similar to the Atlas range of prod-
ucts from Peak Electronics Design).

SYSTEM OPERATION
The device has a number of differ-

ent displays and modes. Each summa-
rizes different information about the
serial link. The system operates com-
pletely via two of the three buttons: S1,
S2, and S3. These are located from left
to right across the bottom of the Rene-
sas Technology SKP16C62P demonstra-
tion board.

The S2 and S3 buttons are used to
navigate the display system. S3 acts as
a Next button that moves the system
through the modes of analysis. S2 acts

FEATURE ARTICLE by Nick Lott

QuickComs

Although RS-232 is disappearing from new devices, you’ll probably have to work with it from
time to time.You can connect Nick’s M16C/62P-based system to an RS-232 device to deter-
mine the correct data rate, wiring, and encoding scheme. You can also use it to monitor a
serial link.

An MC16C/62P-Based RS-232 Analyzer

Photo 1—I built the prototype using the SKP16C62P
demonstration board, some strip board, and a handful
of ICs that I had lying around. The process was fairly
quick and easy.

2612017 Lott.qxp 12/5/2006 11:31 AM Page 20

http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 21

as an Enter button for selecting
options from the menu.

In the initial display, the device
shows the status of the two serial con-
nections DE9F and DE9M, the female
and male connectors, respectively. If a
cross-wired cable is detected on a port,
then “Xvr” will be displayed next to
the name of the port. If the port is dis-
connected or isn’t detected, then it
will not be shown on the display. If
neither port is in use, then a “No
Cable Detected” message will be dis-
played. When at least one port is
detected, you can move on to other
displays. If both serial ports are being
used, then data rate detection and
analysis will occur only on the DE9F
connector. To detect on the DE9M
port, simply remove the DE9F cable.

The voltage display shows the RS-
232 voltage levels. These voltages are

measured on the RECEIVE pin of each
input. S2 changes the display format
to include two decimal places. It’s this
voltage that is used to detect the pres-
ence and polarity of a cable. This
information is a useful check for
ensuring that the serial link’s hard-
ware layer is present and operational.

Monitor mode is used to initiate com-
munication on the USB connection to
allow third-party monitoring of the data
sent and received on the DE9 connectors.
The USB connection uses the same data
rate and settings as those detected on the
DE9 connectors. S2 is used to toggle
the USB connection on or off.

The number of events detected on the
RS-232 lines is available as a Display
mode. The device has a maximum num-
ber of 128 events that can be analyzed.
The event memory resets automatically
if there is a 1-s pause in data on the

serial line. Pushing S2 can also clear
the event memory. When an event is
detected, the green LED illuminates.

The period display is used to show
the width of the shortest pulse in the
event memory. This is used to calcu-
late the data rate. Again, S2 changes
the display format to include decimal
places. The display will automatically
change units between microseconds
and milliseconds where appropriate.

In addition, the exact data rate cal-
culated from the bit width is available.
As with other displays, S2 changes the
display format to include a decimal
place. The data rate is displayed in
bits per second. This information is
useful when a microcontroller has
been set up incorrectly or when a
clock has gone haywire and is no
longer using a standard data rate.

Although the given bits per second

Figure 1—Although there are a number of ICs in this design, it’s simply some very basic circuits repeated a number of times.

2612017 Lott.qxp 12/5/2006 11:31 AM Page 21

http://www.circuitcellar.com

22 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

value is useful, it is often slightly wrong
due to timing inaccuracies and it doesn’t
always give a usable value. The data rate
Guess mode calculates the closest com-
monly used data rate from an internal
table of standard data rates. The top line
of the display shows how close the
measured data is to the guess. A value
less than 90% usually means the guess
is wrong. This information can be a very
valuable ballpark figure when you are
beginning to debug a serial link.

If the data rate guess looks good

enough, you can then go on with some
analysis of the data in the event mem-
ory using the guessed data rate. If no
reasonable data can be found, then
“NoMATCH” is displayed. If the pari-
ty bits can’t be determined, the dis-
play will read “xx bit,” where xx is
the number of bits per word including
start, stop, and parity bits. The top
line displays the number of complete
words or characters used in the analy-
sis. If you have a good data rate guess
(better than 98%) and a decent num-

ber of events (more than 32 or so), this
is usually bang on the money.

HARDWARE
Renesas Technology’s M16CM30626

was a great choice for this design
because of its three flexible UARTs
and its large memory. I used the
SKP16C62P development kit to help
reduce development time. I found it
useful because it contained all of the
basic input and output hardware, and
it brought all of the ports out to user-
friendly 0.1″ headers.

The full-featured development envi-
ronment provided by the High-Perfor-
mance Embedded Workshop in combina-
tion with Renesas’s interactive on-line
labs gave me a great head start for learn-
ing about this microcontroller family.
Using these tools, I could get to grips
with the environment and hardware vir-
tually while the real hardware was in
the hands of FedEx. This enabled a great
start to the project, and when the actual
hardware arrived, I was ready to start
my specific application development.

As you can see in Figure 1, the cir-
cuit is based on a number of RS-232
line drivers and receivers (Texas Instru-
ments 75C3243). Two of these are used
on each input and have crossed wiring.
When the system starts up, all of the
transceivers are disabled. The firmware
then looks at the voltages on the signal
pins of the connectors and enables the
appropriate transceivers.

TRANSCEIVERS & LINE DRIVERS
Two transceivers were used for each

RS-232 connection. I used Texas
Instruments 75C3243 ICs because they
were available at the time. For a future
design, I’m considering using a dual or
even quad transceiver chip such as the
64C232343 to lower component count.

This system was not designed to be
the most inexpensive solution, but I
wanted it to be easy to construct. The
drivers were chosen simply because I
had them on my workbench. If you
want to build a similar system, any
driver with a high impedance or Shut-
down mode would be suitable. In oper-
ation, an individual select line enables
each chip. At most, only one chip is
ever active per channel at one time to
avoid driver contention issues.

2612017 Lott.qxp 12/5/2006 11:31 AM Page 22

http://www.circuitcellar.com
http://www.lantronix.com
http://www.lantronix.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 23

The chips operate in three modes. In
High Impedance mode, both chips are
disabled. This state is used to examine
the voltages present on the communi-
cations line with no excitation from
the on-board drivers. With the first
chip selected, the channel is in Nor-
mal mode. In this mode, the pins of
the DE9 are connected in standard
configuration with pin two correspon-
ding to the RXD (input) signal and pin
three as TXD (output). In this configu-
ration, the second chip is disabled.
Lastly, in Crossover mode, the second
chip is selected and the first is dis-
abled. The second transceiver is wired
with opposite connections to the DE9.
This will have correct connections for
a crossover/null modem cable. To
keep the circuitry simple, only TXD
and RXD signals were used. Flow
control signals such as CTS, RTS,
and DTD could have been added, but
they weren’t used due to time con-
straints. This set up is repeated for
each channel.

The TTL logic sides of the two
transceivers are connected in parallel
and then cross-wired and connected
between channels. This ensures that
the two channels have a correct con-
nection. TXD from channel 1 (DE9M)
is connected to RXD on channel 2
(DE9F). As a result, there are only two
TTL signals on the schematic: RXF
and RXM. These signals are connected
to RXD1 (P6_2) and RXD2 (P7_1) on
the demonstration board. This enables
you to monitor the communications
on each port individually. This
crossover of the transceivers on the
TTL logic side enables the system to
function as an automatic null modem
cable with minimal overhead on the
microcontroller system. All the micro-
controller has to do is simply enable the
appropriate transceiver for each channel.

To enable the measuring and analy-
sis of raw serial data, these signals are
also connected to two of the external
interrupt channels: INT1 and INT2.
This enables the system to accurately
detect level transitions.

VOLTAGE SCALING & SAMPLING
In the initial state, all transceivers

are off, and the built-in ADC measures
the external voltage on the pins. A

separate channel of ADC and op-amps
(giving four channels in total) sample
each pin voltage.

The voltage on each SIGNAL pin is
monitored with some basic op-amp
circuitry. This is done to scale them
from possible inputs of ±25 V to the 0
to 5 V available to the microcon-
troller. The pin voltages are first
scaled using resistors and then
buffered using a voltage follower. The
voltage is then inverted and shifted.
This centers it on the reference volt-

age. The reference voltage is half the
microcontroller supply voltage (VCC)
and is created by a simple resistive
divider and a buffer. I initially consid-
ered multiplexing these signals
through a single input stage, but I
decided to go for the brute force
approach for two reasons. First, op-
amps are generally cheaper than ana-
log multiplexers. Secondly, with the
SKP16C62P, I had inputs to burn. In
fact, four ADC channels are hardly a
big request for any modern microcon-

2612017 Lott.qxp 12/5/2006 11:31 AM Page 23

http://www.circuitcellar.com
http://www.cadsoftusa.com

24 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

troller these days.
A fifth RS-232 driver was used

simply to generate the ±10 V for
the op-amp voltage rails. This was a
MAX233ACPP. I just so happened
to have one still sitting on my
workbench. It did the job nicely. I
didn’t need any external parts. For
my future design, this will be
eliminated. I will use either the
existing drivers or a less expen-
sive, more efficient, solution.
Using this independent voltage
generation enabled me to have all
of the 75C3243 ICs in Shutdown mode
until I had ascertained the correct con-
nection polarity.

CONSTRUCTION
I used strip board to mount the

components and the SKP16C62P. It
was a good choice because the simple
external circuitry consists of mostly
through-hole components. The trans-
ceiver chips were all SMD 1.27-mm
pitch small outline packages (SOIC).
To mount the chips, I simply ran
uninsulated wire through holes in the
strip board and then soldered to the
pins on the chip sitting on the compo-
nent side of the board. I was able to
use this technique because a large
number of the pins remained unused
in the design. This has proven to be a
pretty robust technique. All of the
chips are held firmly in place and have
managed to withstand a fairly rough
life on my workbench.

I mounted the demonstration board
using standard PCB stand-offs over the
sampling and scaling section. Photo 2
shows the component side of the
board with the Renesas board folded
out of view.

I connected the circuitry to the
demonstration board using an old 50-
way IDC ribbon cable that I had in a
box of junk. This was great because it
enabled me to quickly and easily dis-
connect the demonstration board
when I wanted to use it in other
M16C projects and experiments. Any
unused wires were simply tied back in
a neat bundle and moved out of the
way. If you have a keen eye, you’ll
notice that the hook-up wire is mostly
single core from a salvaged length of
twisted-pair telephone network. There

are a few 0.1-µF decoupling capacitors
not shown on the bottom of the board.

SOFTWARE
Data rate analysis is achieved by using

a 16-bit timer and information obtained
from the external interrupts (INT1 and
INT2). The time lapsed between each
event is recorded in a buffer using the
16-bit timer. The timer is free running
with any overflows recorded between
external interrupt events.

The software sets the internal
timers to 3 MHz (the main clock
divided by eight). This gives a frequen-
cy resolution of 333.3 ns. In order to
be used for other human interaction
events, the timer is set to reset every
5 ms. At this point, an overflow is
recorded, LEDs are updated, and a data
timeout is checked for.

Although mostly redundant, the
logic level after the event is also
recorded. The levels are recorded as
single bits, whereas the main event
time array stores the timer values as
32-bit numbers. The event memory is
reset if no events have occurred for 1 s.
In its current form, the software has
memory for up to 128 events. At a
standard 8N1 encoding, this equates
to at least 12 characters. This may
seem like a very small data set, but in
practical tests, it was found to be plen-
ty. The event times are stored as raw
clock counts.

When designing the software for the
analysis, I aimed to simply mimic the
actions I would manually take and
automate them. The trouble with
this approach was that so much of
successfully tackling these problems
in real life relies on educated guess-
work from prior experience. I was

able to emulate this through the
use of a simple data rate table
because a standard data rate is
used more often than not. (Stu-
dents are often amazed when
looking at a rough 100-µs pulse.
They tend to say, “Hmm, I bet
that’s 9,600 bps.”)

I thought of using a similar
trick for the encoding schemes,
but I felt it was better to go for a
brute force approach. This makes
it possible to find that one-off
crazy setting that you would

never use yourself. My manual
approach is to try different encoding
schemes in the order of popularity
(based on my experience). I usually
start with 8N1, 7N1, 8E1, and so on
until I see some data that looks about
right. With the speed of the microcon-
troller, it is fast enough to simply try
every valid possibility. Of course, the
other difficulty is defining exactly
how to quantify “about right” in
terms of C code and arrays of data.
Luckily, that is something UARTs do
every day. It is well documented. I
found Jan Axelson’s book, Serial Port
Complete, to be extremely helpful in
this respect.

DATA RATE
The shortest event is easily used to

determine the data rate. Selecting the
closest value from a table of common
data rates then normalizes it.

The event data is then converted
from time data to bit length data using
the nearest data rate. So, a 300-µs
event is said to be 3 bits long if the
selected data rate is 9,600 bps. This data
is then used to look for consistent posi-
tioning of start, stop, and parity bits.

ENCODING
When I first wrote the software for

this project, I called it a “statistical
analysis.” I don’t know if this term is
really correct, but the idea is to simply
try everything and see how often it’s
right. I then just simply pick the best
solution. This type of software is, of
course, only as accurate as the sample
data. It’s prone to being wrong for
rather small sample groups. The more
astounding thing was its accuracy.

The first part of the encoding analy-

Photo 2—When you remove the Renesas Technology hardware from
the prototype, you’re left with a relatively basic set of electronics.

2612017 Lott.qxp 12/5/2006 11:31 AM Page 24

http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 25

After graduating in 2001 with a B.E. in
electrical and computer engineering
from Canterbury University in New
Zealand, Nick Lott worked for three
and a half years as an electronics tech-
nician for Victoria University of
Wellington New Zealand. He spent
last year exploring Japan and building
electronic systems while living in
Tokyo and teaching English. Nick cur-
rently lives in London. You may con-
tact him at nick.lott@gmail.com.

RESOURCES
J. Axelson, Serial Port Complete, Lake-
view Research, Madison, WI, 2000.

P. Horowitz and W. Hill, The Art of
Electronics, Cambridge University
Press, Cambridge, England, 1989.

Renesas Technology, M16C Family,
Renesas Interactive, www.renesas
interactive.com/renesas/guest/guest_
index.htm.

SOURCES
DLP-USB232M USB UART Adapter board
DLP Design, Inc.
www.dlpdesign.com

LP324N Op-amp
National Semiconductor Corp.
www.national.com

M16C/62P StarterKit Plus
Renesas Technology Corp.
www.renesas.com

SN75C3243 IC
Texas Instruments, Inc.
www.ti.com

sis is a simple routine that looks for
start and stop bits and then counts the
number of times it has successfully
found a word at a given word length.
This is repeated for each word length
from seven (5N1) to 12 (9x1). The one
with the highest score is then
assumed to be the total word length.

After word length has been estab-
lished, the software assumes that
there is only 1 stop bit and it analyzes
the data for the parity bit. If it finds a
given parity 100% correct for each of
the possible words in the event memo-
ry, the communication is deemed to
be of that parity. If it finds all the
words correctly but mixed parity, it
determines there to be no parity. The
software could easily be extended to
look for more than 1 stop bit.

FUTURE PLANS
As I developed the QuickComs ana-

lyzer, I was amazed at how I was able
to take a small sample of data, per-
form some simple analysis, and have
a useful device. I was also amazed at
the system’s tolerance of errors given
the simplicity of both the software
and hardware.

I recently began developing the all-
in-one super RS-232 tool, but sadly,
it’s still in development. (It’s now sit-
ting in some boxes just beside my
workbench.) With this latest reincar-
nation, I hope to integrate all of its
existing features with some new ideas.
I plan to turn it into a pocket-sized,
stand-alone terminal. It will be a tech-
nician’s best friend. I

PROJECT FILES
To download code and additional files,
go to ftp://ftp.circuitcellar.com/pub/

Circuit_Cellar/2007/198.

500 MHz Sampling / Timing Mode (Internal clock)

200 MHz Sampling / State Mode (External clock)

Multi-level Triggering on Edge, Pattern, Event

Count, Group Magnitude/Range, Duration etc.

Real-Time Hardware Sample Compression

Qualified (Gated) State Mode Sampling

Interpreters for I2C, SPI and RS232

Integrated 300 MHz Frequency Counter

+6V to -6V Adjustable Logic Threshold
supports virtually all logic families

Full version of software free to download

Mictor adapter available

www.pcTestInstruments.com

Connect this indispensable tool to your PC’s
USB 1.1 or 2.0 port and watch it pay for itself within hours!

Visit our website for screenshots,
specifications and to download the
easy-to-use software.

Professional Features – Professional Features – Exceptional Exceptional Price Price

34 Channels sampled at 500 MHz 34 Channels sampled at 500 MHz

Sophisticated Multi-level TriggeringSophisticated Multi-levelTriggering

Transitional Sampling / Timing and State Transitional Sampling /Timing and State

Intronix Test Instruments, Inc.
Tel: (602) 493-0674 Fax:(602) 493-2258

www.pcTestInstruments.com

2612017 Lott.qxp 12/5/2006 11:31 AM Page 25

mailto:nick.lott@gmail.com
http://www.renesasinteractive.com/renesas/guest/guest_index.htm
http://www.dlpdesign.com
http://www.national.com
http://www.renesas.com
http://www.ti.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2007/198
http://www.pcTestInstruments.com
http://www.pcTestInstruments.com
http://www.circuitcellar.com

Possibilities
Limitless

 The Atmel AVR Design Contest 2006

R

www.circuitcellar.com www.atmel.com

Winners Announcement

The Atmel AVR Design Contest 2006 was an excellent
opportunity for designers to work with the Atmel AVR
family of flash memory microcontrollers and test their
design skills against the world’s best and brightest engineers. Last February, designers from all corners of the
globe started working with the parts and planning their projects. After thoroughly reviewing each submission,
the judges awarded prizes to 12 projects based on their technical merit, usefulness, originality, design opti-
mization, and cost effectiveness.

We are proud to announce that Alberto Ricci Bitti has won the Grand Prize for his innovative WITNESSCAM
project. Alberto’s amazing design is an automated, self-recording surveillance system that features a VGA
CMOS camera, a passive infrared movement sensor, a 1-GB SD card, and an Atmel ATmega32 microcon-
troller. This easy-to-install, self-contained surveillance system is the perfect solution for any building.

Congratulations to all of the winners!

GRAND PRIZE
WITNESSCAM
The WITNESSCAM is a self-recording surveillance cam-
era that’s perfect for the home or office. The innovative,
ATmega32-based system features a VGA CMOS color
camera, a passive-infrared (PIR) movement sensor, and a
1-GB SD card. The aesthetically pleasing prototype looks
like an ordinary alarm detector, but when it detects move-
ment, it silently starts recording. You can control the sys-
tem with an infrared remote. The interactive camera
responds with voice prompts, and the circuit can recognize
when the box is open.

Alberto Ricci Bitti
a.riccibitti@iname.com

Italy

atmel06winners.qxp 12/5/2006 12:09 PM Page 1

mailto:a.riccibitti@iname.com
http://www.circuitcellar.com
http://www.atmel.com

First Prize
ATir AVR IR Keyboard Interface
The well-designed ATtiny45-based ATir interface device offers a
convenient cross-platform solution to interface an IR remote
control to type keyboard macros to a PC. In addition to the
microcontroller, the compact system features an infrared receiv-
er/demodulator and a few discreet components. The interface
plugs into a PS2 keyboard port on the PC and accepts commands
from an infrared remote.

Steven Savage
stevensavage@nls.net

U.S.

The complete entries are available at www.circuitcellar.com/avr2006/.

Second Prize
Bidirectional Stepper Motor
This interesting ATtiny13-based design takes the principles of
current-pulse operated watch hand movement and enables both
clockwise and counterclockwise operation. The device, which
features a mechanical pointer, provides the altitude indication
for a skydiver’s altimeter. The pointer mechanism moves in
both directions to show altitude on the way up and down.

Chris Belcher
stepmotor@ntlworld.com

U.K.

Third Prize
mOtiOn: A Video-Based Motion Sensor
The mOtiOn is an inexpensive video-based motion sensor. It’s based on
the real-time processing of a video signal using analog preprocessing and
optimized image-processing algorithms in an ATmega88 microcontroller.
The unique sensor can detect movement in an incoming composite video
signal in real time at 30 frames per second. It also conveniently shows
where the movement is detected on its video output.

Naubert Aparicio
naubert.aparicio@usa.net

U.S.

atmel06winners.qxp 12/5/2006 12:09 PM Page 2

mailto:stevensavage@nls.net
mailto:stepmotor@ntlworld.com
mailto:naubert.aparicio@usa.net
http://www.circuitcellar.com/avr2006

Honorable Mention
Talking Calculator
This precise, user-friendly, ATmega88-based talking
calculator operates with real numbers. It features the
four basic operations (addition, subtraction, multipli-
cation, and division) and several useful functions

(e.g., change of sign
(+/–), inverse (1/x),
add with memory
(M+), and read from
memory (MR)).

Mariano Barron Ruiz
ispbarum@sb.ehu.es

Spain

The complete entries are available at www.circuitcellar.com/avr2006/.

Honorable Mention
Slave Flash Trigger
A camera’s external flash can be triggered remotely
with its built-in flash. Unlike “photocells,” the

ATtiny13-based Slave
Flash Trigger is intelli-
gent. It can determine a
camera’s main flash and
synchronize it with the
external flash.

Aleksander Borysiuk
alex_priv@wp.pl

Poland

Honorable Mention
AVR Phone Recorder and Telephony
Platform
This well-planned, ATmega32-based project demon-
strates the implementation of a phone line audio and
event recorder that was originally designed for tech-
nical support call center quality-assurance purposes.
The reasonably generic telephony platform can be
easily adapted for other applications, such as an
answering machine/interactive voice response system.

Marco Carnut
kiko@tempest.com.br

Brazil

Honorable Mention
The Lord of the Keys
Built around an ATmega168 microcontroller, this
handy password-managing system enables you to
enter, store, and display numerous passwords and
usernames. The secure device connects to your PC
via a useful software-controlled USB interface.

Carlos Cossio
ccossio@hotmail.com

Spain

atmel06winners.qxp 12/5/2006 12:09 PM Page 3

mailto:ispbarum@sb.ehu.es
mailto:alex_priv@wp.pl
mailto:kiko@tempest.com.br
mailto:ccossio@hotmail.com
http://www.circuitcellar.com/avr2006

Honorable Mention
SAMEgen
The compact SAMEgen is a test generator for the
National Weather Service’s Specific Area Message
Encoding (SAME) coding. The ATtiny45-based sys-
tem is useful for both the development of decoding
circuitry and the testing of SAME-enabled receivers.

Don L. Jackson
don.jackson@ae5k.us

U.S.

The complete entries are available at www.circuitcellar.com/avr2006/.

Honorable Mention
Doggie 911
The Doggie 911 electronic monitoring system
enables dog owners and vets to monitor the patterns
of epileptic seizures in dogs. The real-time,
ATmega32-based system logs the number of
seizures, the duration of the seizures, and the time

between seizures so
that veterinarians
can better diagnose
and treat epilepsy.

Steve Lubbers
ke8fp@arrl.net

U.S.

Honorable Mention
Dummyload
The simple ATmega169-based Dummyload project
simulates loads from 0 to 1,000 mA to help character-
ize new power supply designs. The system enables
you to test at different loading values and test load
transients. The microcontroller interfaces with an
inexpensive LCD and a joystick to provide a simple
user interface.

Kenneth Lumia
klumia@adelphia.net

U.S.

Honorable Mention
Automatic Egg Incubator
The easy-to-use ATmega32-based Automatic Egg
Incubator facilitates the proper hatching of healthy
birds. Two digital thermometer chips serve as dry
and wet electronic thermometers. An LCD shows the
real-time status of the system, which rotates the eggs
and monitors variables such as temperature, aeration,
and humidity.

Niyaz K. Zubair
nkz1984@yahoo.com

India

atmel06winners.qxp 12/5/2006 12:09 PM Page 4

mailto:don.jackson@ae5k.us
mailto:ke8fp@arrl.net
mailto:klumia@adelphia.net
mailto:nkz1984@yahoo.com
http://www.circuitcellar.com/avr2006

30 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

the sensors and implement the USB
interface is not that complex. Most
modern FPGAs and some larger
CPLDs would have done the job. I had
an Altera Nios (Altera’s soft core
processor) evaluation board on hand.
This is built around an Altera
EP1C20F400C7. In addition to the on-
board components required for Nios
experiments, it also has two sets of
expansion headers that enable an easy
connection straight to the FPGA.
Although it was complete overkill for
what I needed, I pressed it into service
(see Photo 1).

TEMPERATURE MEASUREMENT
As I was flicking through some cata-

logs, I found a wide range of tempera-
ture sensors. I wanted one with a sim-
ple digital output so I could drive as
many as possible with the aforemen-
tioned accuracy and input range. The
relatively inexpensive Maxim DS1821
digital thermostat and thermometer
(approximately $6) seemed to meet all
of my criteria.

The DS1821 interface is described as

Wouldn’t it be useful to be able to
monitor a number of temperatures
simultaneously? I want to be able to
measure the temperature in my house,
determine the temperature in my
refrigerator, verify the internal tem-
peratures in my designs, measure the
temperature under the hood of a car
I’m tuning up, and more.

I recently came across some inexpen-
sive temperature sensors with an easy-
to-drive 1-Wire interface, so I built a
system for measuring and logging a
number of temperatures. The system
can measure more than eight inputs
between –10° to 100°C. In addition, it
can measure temperatures from a dis-
tance (my garage is at the other end of
the house). When I interface the sys-
tem to a PC, I can easily view the data.
I kept the logic footprint per sensor
low, so I could see how many sensors
could be driven from one FPGA.

My background is in digital design
(with a very strong emphasis on FPGA
design/implementation for the last 12
years or so). As the saying goes, “When
your only tool is a hammer, everything
looks like a nail.” An FPGA
seemed like the obvious choice
for the project. My immediate
thought was to use an FPGA eval-
uation board, so all I had to worry
about was the logic.

In this article, I’ll describe the
system and my test results. I’ll
concentrate on the the FPGA
logic to drive the sensors and
the flexible one-pin USB inter-
face used to connect it to a PC
(see Figure 1).

FPGA BOARD
The logic required to drive

1-Wire, but it seems to use a particu-
lar flavor of the 1-Wire interface. My
understanding is that most 1-Wire
applications allow devices to be
addressed on a common interface,
whereas the DS1821 allows only
point-to-point wiring. It might have
been convenient to be able to run a sin-
gle cable run to remote sensors, but
each DS1821 requires only three inter-
face cables, so this isn’t a big drawback.

1-Wire/DS1821
The 1-Wire interface relies on a data

line pulled high with a resistor at
some point. All communication is
performed by pulling the line down to
signal 0 or releasing it to signal 1.
When communicating with the
DS1821, the FPGA is considered the
master and the DS1821 is the slave.

All communication with the
DS1821 starts with an initialization
sequence where the master pulls the
data line low for more than 480 µs and
then releases the line. After a period
of time, the slave pulls the line low
for 60 to 240 µs to confirm that it’s

FEATURE ARTICLE by Nial Stewart

Multi-Input Temperature Logger
Nial designed an FPGA-based multiple-input temperature logger with an innovative USB
interface. In this article, he describes the FPGA logic to drive the sensors and the flexible
one-pin USB interface used to connect it to a PC.

Logging PC

1_PIN_USB_IF

1_PIN_IF_CPLD.VHD

FT245R

USB IF

TEMP_LOGGER_TOP.VHD

One_PIN_IF_FDGA_VHD

Temp 1

Temp 2

Temp 3

Temp 10

SLAVE_IF_3

SLAVE_IF_2

SLAVE_IF_1

SLAVE_IF_10

3.3 V
+

3.3 V
+

Interface board

3.3 V
GND

3.3 V
+

3.3 V
+

+

+

+

+

Sensor 1

Three-wire cable

Sensor 10

Ribbon cable
from expansion header

ds1821_IF.VHD

Two-wire
connection

Figure 1—Temp_logger_top.vhd is implemented on the FPGA evaluation board.The other two modules are small custom PCBs.

2701018Stewart.qxp 12/5/2006 11:47 AM Page 30

http://www.circuitcellar.com

present. The command byte or data
byte transfer sequence follows the ini-
tialization.

To write a bit to the slave, the mas-
ter starts by pulling the data line low
for 1 µs to indicate the start of the bit.
To write a zero, the line is kept low.
To write a one, the line is released and
the pull-up then drags it high. To read
a bit, the master again starts by
pulling the data line low to indicate
the start of a bit. It then releases the
line if the slave wants to signal a zero,
it must keep the data line pulled low.
To signal a one, it does nothing and
the pull-up drags it high.

The DS1821 is fairly complex with
several different operating modes. I
tried to keep things as simple as possi-
ble after much experimen-
tation and hair pulling
pared down the interface
protocol to initiate a con-
version and read the result.
The DS1821 IF protocol
sends the initial sequence,
writes 0xEE (Start Conver-
sion Command), waits 0.5
s, sends the initial
sequence, writes the 0xAA
(read temperature com-
mand), reads the result,
and goes back to start.

DRIVING THE DS1821S
Initially, I designed a

module that implemented
the complete interface to
each DS1821. This
worked well, but there
was a reasonably complex
state machine and a large

counter involved, having a ded-
icated module per device repli-
cates this for each device.Most
of this functionality is com-
mon across all the devices
interfaced. All of the outputs
are driven together. The only
logic that is different is when
device present signal is detected
or when the results are being
read.

The structure of the design
was changed to a master/slave
arrangement. The master mod-
ule (ds1821_if.vhd) generates
all of the timing and a master

output signal. It also generates timing
flags to the slave to record if the sen-
sor has replied to the initialization
(i.e., if it’s present or not) and then to
shift in the conversion result. This
keeps the logic footprint required for
each device interfaced low and allows
a single FPGA to interface a very large
number of devices (see Figure 2).

The ds1821_if.vhd module is split
into three main sections. Everything is
synchronous and the processes com-
municate with start and finish flags
that are activated for one clock cycle.

STATE CONTROL PROCESS
The state machine steps through the

command sequence. It drives the low-
level module with init, wr_byte,

and rd_byte flags. The low-level
process signals back that it has fin-
ished each task with the done flag.
The DS1821’s operating mode could
be changed by changing this process to
write and read the appropriate parame-
ters using these commands.

This state machine implements the
commands from the high-level state
machine, handling all the low-level
interface timings and so on. You will
notice that all the timing parameters
are defined as constants. Initially, I
designed the DS1821 interface to run
at the FPGA board’s 50-MHz crystal
speed. When this changed to 80 MHz
because of the need to oversample the
USB interface, it was easy to change all
of the constants to the new values for
an 80-MHz clock. (The internal 80-MHz
clock is generated with one of the
FPGA’s four PLLs.)

This generates the MASTER_DOUT
signal that is fed to the data line of
each of the sensor data lines:

Dq(#) <= ‘0’ (when master_dout
= ‘0’) else ‘Z’;

This module also generates the trigger
signals to the slave modules interfac-
ing the DS1821s. Every time an ini-
tialization is performed the slave gets
a detect_sensor flag to determine if
its sensor is replying or not. When

reading the result byte,
the shift_bit_in flag
indicates to the slaves
when to shift the next
result bit in, and they
should transfer the tran-
sient shift register result
into the temp output reg-
ister at the end op_read-
ing signals.

Note that slave_if.vhd
was designed to have a
minimal footprint to
maximize the number of
devices a single FPGA
could drive. When a
detect_sensor flag is
received, the status of the
data line is sampled and
the sensor_prsnt out-
put is set if a sensor is
detected. The
detect_sensor flag also

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 31

DS1821-IF.VHD

Protcol control process

Init WR.byte RD.byte Done

Lower level timing control process

Temp 1

Temp 2

Temp 3

Temp 10

Detect_sensor

Shift_bit_in

Op_reading

SLAVE_IF (1)

Detect sensor

Shift_bit_in

Op_reading
Temp 1

Detect sensor

Shift_bit_in

Op_reading
Temp 2

Detect sensor

Shift_bit_in

Op_reading
Temp 10

SLAVE_IF (2)

SLAVE_IF (10)

dq(1)

dq(2)

dq(10)

Figure 2—A modular approach to the DS1821 interface allows the number of devices
interfaced to be easily changed.

Photo 1—Take a look at the entire system.The one-pin interface
board is on the right.The sensor interface board is at the bottom.
Only four sensors (two are shown) are wired in.

2701018Stewart.qxp 12/5/2006 11:47 AM Page 31

http://www.circuitcellar.com

pensive, although assembling the sen-
sors was fairly fiddly. Small screw ter-
minals were used to connect on the
interface board. These work fairly
well, although they are fiddly. If a
large number of sensors were to be ter-
minated in a semipermanent manner,
I would use IDC headers/plugs to ter-

with a 4.7-kΩ pull-up to 3.3 V. I built
a simple one-sided interface board
with copper clad board and Press-n-
Peel transfer film to allow 10 sensors
to be connected (see Photo 1).

To connect the sensors to the inter-
face board, I used ribbon cable split
into three wire cables. This was inex-

32 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

Listing 1—The DS1821 interface top-level process loops constantly. It reads the sensors via the slave inter-
faces, instantiated below, which provide the results in an output register TEMP. These are then read by the PC
over the USB interface at the required rate.

slaves_generate:for I in 1 to 10 generate

slave_inst: entity work.slave_if
port map (

rst => rst, — in std_logic;
clk => clk, — in std_logic;
detect_sensor => detect_sensor, — in std_logic;
get_bit => shift_bit_in, — in std_logic;
output_reading => op_reading, — in std_logic;
temp => temp(I), — out std_logic_vector(7 downto 0);
sensor_prsnt => sensor_prsnt(I), — out std_logic;
dq => din(I) — in std_logic
);

dq(I) <= ‘0’ when (master_dout = ‘0’) else ‘Z’;
din(I) <= dq(I);

end generate;

resets the internal shift register, which
is filled when the shift_bit_in flag
is activated eight times. When the
output_reading flag is asserted, the
shift register value is registered into
the temp output if the sensor is pres-
ent. If the sensor isn’t present, the
result is set to 0xC9. (This equates to
a temperature of –55°C.) This last step
allows the state of the sensor to be
established without having to read the
separate sensor_prsnt bit. It never
gets that cold in Edinburgh, so I
thought this was a safe value. This
could be removed to reduce the foot-
print even more.

The slave interfaces and the assign-
ment of the master_dout signal to the
individual data lines has been done
with a generate statement. You will
see that this easily allows the number
of devices interfaced to be increased
(see Listing 1).

DS1821 CONNECTION BOARD
The interface to the DS1821 could-

n’t be much simpler: a GND line, a
3.3-V power line, and a signal line

2701018Stewart.qxp 12/5/2006 11:47 AM Page 32

http://www.circuitcellar.com
http://docs.tibbo.com/index.html?em1000_ev.htm

63.qxp 5/4/2006 1:10 PM Page 1

http://www.atmel.com/ad/at91

95.qxp 10/5/2006 10:02 AM Page 1

http://www.star.net/people/~mvs

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 35

minate a large number of sensors in
one operation.

One of the goals was to be able to
drive the sensors over a reasonable dis-
tance. I unrolled three wires from the
full length of my ribbon cable roll
(30.5 m/100′) and tested to see if the
sensor worked, but no go. I changed
the pull-up resistor from the recom-
mended 4.7 kΩ to 1.5 kΩ to see if that
would improve matters with no more
success. On the DS1821, the DATA
pin is the middle of the three, so I
configured my interface to use the
middle of the three wires as the data
line. This configuration presents the
data line the highest capacitive load.
So, as a quick experiment, I changed
the data line to use one of the two end
cables. Surprisingly, it worked.

FPGA USB INTERFACE
I’ll cover the USB interface portion

of the FPGA design later in the article
after I’ve described the one-pin USB
interface workings. The FPGA was
built with Altera’s free web edition of
its QuartusII software. The web edi-
tion supports development on all
devices in Altera’s CPLD family,
smaller FPGA families, and some of
the smaller members of the
faster/larger device families. All that
is required to replicate the build are
the VHDL source files, the Quartus
project file (project.qpf) and the con-
straint/pin allocation file
(project.qsf).

The resultant POF file was
used to program the EPCS64
configuration PROM on the
Nios evaluation board that
configures the FPGA at
power-on. If you download
the project from the Circuit
Cellar FTP site, you will
note the directory structure I
tend to use for FPGA devel-
opment: Altera (where Quar-
tus is run and the FPGA is
built), ModelSim (where I
run test benches), TestB (test
benches written to test
designs), and VHDL (the
design source directory).

Note that for any signifi-
cant FPGA development, the
ability to simulate designs is

essential. Simulation involves using
your design as a subcomponent in a
higher-level design to drive the inputs
and monitor the outputs. This enables
you to test submodules as they are
written and debug all of the small
functional errors before you get any-
where near hardware. I wrote a test
bench that connected the CPLD and
FPGA modules and drove the CPLD
module’s FT245 interface
(TestB/tb_One_PIN_IF_CPLD.vhd).
This simulation enabled me to fully
test the functionality of the two mod-
ules to ensure that they worked
together and ensure that they weren’t
both trying to drive the one-pin line at
the same time. This saved debug time
and effort and avoided the risk of dam-
age to the devices if both tried to drive
the one-pin line in contention during
initial debug.

Mentor Graphics’s ModelSim is the
industry-standard tool for FPGA simu-
lation. It is capable, but it’s also very
expensive. Symphony EDA’s VHDL
Simili is a more affordable fully stan-
dard-compliant simulator. Xilinx’s Web-
PACK (freely downloadable) also
includes a limited version of ModelSim.

FPGA-PC USB INTERFACE
The facility of a simple PC interface

with an FPGA can be extremely use-
ful. It can enable early debugging
before other interfaces are finished,

backdoor access to increase debug
information, or access to embedded
applications with no other direct
interface to the device.

For some time, I wanted a generic
USB interface that could be used on
any of my FPGA evaluation/develop-
ment boards and easily adopted in any
new designs. But there were a couple
of obstacles in my way. First, it would
require a dedicated board design/con-
nector pinout for each new application.
No two development boards seem to
have the same connector pinout. Plus,
it’s hard to have a generic interface to a
number of different boards due to the
different header power, ground, and sig-
nal pinouts.

In addition, it would require a num-
ber of dedicated pins for the interface
(a minimum of 12). Normally, this
isn’t a problem, but that’s quite a few
device pins to commit for a debug
connector that may not be used. Also,
where board space is at a premium,
adding a connector with grounds (16
pins?) to allow for debugging would
occupy a fair bit of board space, espe-
cially if a number would be needed (i.e.,
more than one FPGA on the board).

Implementing a USB interface with
an FPGA is not difficult, especially
using one of the ubiquitous FTDI
interface devices. One drawback asso-
ciated with FTDI devices is that they
currently allow only full-speed USB

transfers at approximately 1
MBps. Other options are
available to implement a
USB 2.0 interface, but these
all involve extra design
effort. A high-speed version
of the FPDI devices would be
a welcome addition to their
product range. However, raw
speed is not really an issue
for this project—1 MBps is
sufficient.

I have previously designed
interface boards around the
FT245BM device. The latest
FTDI device—the FT245R
with integrated termination
resistors, a clock generator,
and EEPROM—is even easier
to use. It seemed like a good
basis for this design.

I mulled over how to get

PC

FT245R

CPLD

RD
Command
 address

TEMP_X

8 RD
Command
 address

8

TEMP_X

8 RD
Command
 address

8

TEMP_X

One-pin interface

DS1821 IF

8 8
RD

Address TEMP_X

USB
IF

Board

FPGA
System

USB Transfer

8-bit FIFO RD/WR

Bidirectional one-pin
transfer

FPGA Local bus RD/WR

Figure 3—Take a look at the data flow through the system (not the physical data
paths). The one-pin is a single line. The read temperature command is sent down
to the one-pin interface, which selects and returns the appropriate reading.

2701018Stewart.qxp 12/5/2006 11:47 AM Page 35

http://www.circuitcellar.com

36 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

around the problem of making an
interface universal. My initial
thoughts were to have a CPLD
between the FTDI interface device and
a connector header, thereby repro-
gramming it to route the FTDI pins to
the header pins depending on the tar-
get. Unfortunately, this doesn’t really
help because most development
boards have different power and
ground connections.

I think I was sitting on my usual
spot for inspiration (you know
where!) when it hit me that I could
use the CPLD to serialize the data
from the FTDI interface device to the
FPGA. Both the CPLD and all mod-
ern FPGAs can implement bidirec-
tional data on a single pin! This
approach means that all that’s needed
to connect to the FPGA is a two-pin
interface with a signal and a ground
connection. The logic required in the
FPGA is reduced. The throughput of

the interface is reduced, but for this
sort of debug/generic interface, maxi-
mum data throughput isn’t a design
target. Only one FPGA pin is required
for this, so it became the one-pin
interface.

ONE-PIN CPLD
With only one data connection

between the target FPGA and the
USB Interface Board (USBIB), the
interface has to operate asynchro-
nously. All serial transfers are byte
wide with a single high start bit. The
data line is weakly tied inactive low
on the USBIB.

All transfers are initiated from the
PC and start with a command byte:
0xA0 for a write or 0x50 for a read
(only the top 4 bits signify the com-
mand). The target address byte is sent
next and then data byte for a write
operation. These are read from the
FT245R FIFO by a CPLD and serially

transferred to the FPGA. For a read
operation, the CPLD sends the com-
mand and address bytes to the FPGA
and then tristates its OUTPUT pin
and waits for the data byte back from
the FPGA. Again, a single high start
bit indicates the start of the transfer.
Both devices tristate their outputs
when not signaling (see Figure 3).

Although ultimate speed wasn’t a
goal, I wanted to be able to achieve
reasonable data throughput, so a fin-
ger-in-the-air data rate of 20 MHz was
chosen for the serial interface. I knew
that this might prove difficult to meet.
It is fairly fast and there’s no facility
for controlling data paths or imped-
ances when connecting to third-party
boards. If this proved impossible to
meet, I knew there was always the
option of throttling this speed back to
a slower rate.

I decided to use an internal 80-MHz
clock in both the FPGA and the

Figure 4—This is a basic implementation of a MAX II CPLD interfaced with an FT245RL USB interface device. The outputs are protected with Littlefuse Pulseguards and
diodes to VCC/GND as a belt-and-braces approach to EMC protection. Outputs can be driven with 47-Ω source terminations or straight out.

2701018Stewart.qxp 12/5/2006 11:47 AM Page 36

http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 37

CPLD for detecting the data and sam-
pling the data. Sampling at 4× data
rate enables data to be sampled in a
middle region of a bit. There are now
two aspects to the USB interface: the
USB interface board with the serializ-
ing CPLD and the embedded FPGA
module.

USB INTERFACE BOARD
As you can see in Figure 4, there is

not a lot to the USB interface board.
The FTDI device has so much inte-
grated in it that the USB side of things
is trivial.

I built the system around an Altera
Cyclone II evaluation board, so I
decided to keep with Altera for the
CPLD on the USB interface. I chose a
MAX II CPLD. I didn’t know the final
logic footprint of the CPLD function-
ality when designing the board, so I
created a footprint that enables either
an EPM240T100 or EPM570T/100 to
be fitted.

The 3.3 V for the MAX II device is
generated from the USB interface 5-V
supply with a local linear regulator.
One thing to note is that the USB
specification stipulates that the host
controller can put any USB device
into Suspend mode, where the draw
on the interface must be less than
500 µA. In order to meet this require-
ment, I chose a linear regulator with
an enable output. This is driven from
the FT245R’s PWREN# pin. This only
enables power to the rest of the board
when the FT245R has undergone USB
enumeration and it is not in Suspend
mode.

A crystal oscillator provides the 80
MHz. It is positioned as close to the
CPLD as possible and connected to
one of the dedicated clock INPUT
pins.

The interface board must be as
robust as possible, so I configured two
interface paths. If one CPLD pin is
damaged or destroyed, a quick recom-
pile on the Altera tools will enable the
other path to be used. In order to pro-
tect the input from ESD strikes, a Lit-
tlefuse PulseGuard ESD suppressor is
positioned as close to the connector
pins as possible on the bottom of the
board. A BAV99W (two-diode package)
protects against over- and under-volt-

age spikes. The capacitance of these
two devices is very low (the Pulse-
Guard is less than 0.055 pF and the
BAV99W is less than 1.5 pF), so they
don’t have much effect on the data
path.

The configuration of many of the
target FPGA evaluation boards is
unknown, so it’s hard to control the
path impedance and terminate things
properly for bidirectional communica-
tion. Two pins were connected to each
output path. One had a straight con-
nection; the other had a source termi-
nation resistor of 47 Ω. This enabled
experiments to optimize the termina-
tion if things did not work.

CPLD LOGIC
There are three main processes in

the CPLD logic. The master process is
the protocol process that drives the
two processes that interface with the
FT245R and drive the serial interface
with the FPGA. The FT245 IF process
is fairly simple. It processes either a
get_byte or send_byte flag from the
master process to read or write data to
or from the FT245R Rx or Tx FIFOs.

The FPGA IF process is simple. It
acts on the send_bits or get_bits
flags from the master process. To send
a byte, it is registered into a shift reg-
ister with a leading one as the start
bit. The data is shifted through the
shift register every four 80-MHz clock
cycles (counted by clk_count) for 9
bits (bit_count). A delay is added to
the end of a character so the FPGA
can distinguish between the end of
one and the next start bit.

Note that for both interface process-

es, the asynchronous data or flags are
retimed twice into to the 80-MHz
clock domain before it is used. This is
considered good design practice to pro-
tect against metastability.

FPGA INTERFACE LOGIC
The FPGA interface is simpler than

the CPLD with just a master process
and a serial interface process. The
interface module takes the command,
address, and data from the serial one-
pin interface and drives a local bus
interface (see Table 1).

The master process idles and waits
for a command to be received by the
serial interface process. A decision is
made after a command and address
have been received about whether
write data is expected or whether the
local bus should be driven to read
from the target address. If a write
command is expected, then the write
data is received and then the write is
driven out on the local bus for one
clock cycle. If a read the target address
is read, the serial interface process is
then signaled with send_bits to seri-
ally transmit the data to the USB
interface board.

The serial interface process acts on
either a get_bits or send_bits flag
from the master process. To receive
data, the process waits until a start bit
is detected. This is then confirmed
and the data clocked into a shift regis-
ter. Data back to the USB-IB is shifted
out as soon as the send_bits flag is
activated. The USB-IB should be
expecting it if all is still synchronized.

ONE-PIN IF TESTING
Using the USB interface board

marked the first time I used a MAX II
CPLD. When I initially built the USB
interface board, I did a quick design
that simply flashed the LED to check
that I was able to configure the device
correctly.

When I first tried to test the one-pin
interface, I had baffling problems that
I traced to the FT245R interface. I
couldn’t understand what was wrong
until I discovered that the FT245R
was permanently asserting the output
to indicate that data had been received
from the PC. I then realized that the
default for unused pins in Altera’s

Table 1—I listed the FPGA one-pin interface local bus
signals. These drive the access to the FPGA tempera-
ture registers.

Bus ports Description

Lb_address Rd/wr address

Lb_d_out Wr Data out

Lb_d_in Rd Data in

Lb_wr Wr Flag

Lb_rd Rd Flag

Lb_din_valid Flag in that Rd data is valid.
This allows the target being
read to delay the interface
until it responds with data
(usually the next system
clock cycle).

2701018Stewart.qxp 12/5/2006 11:47 AM Page 37

http://www.circuitcellar.com

38 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

Quartus software (for building the
CPLD configuration) is an output driv-
ing to GND. This is something to
look out for in any new Quartus proj-
ects. I had forgotten to change this to
“tristate inputs,” and my tests flash-
ing the LED had destroyed the FT245R
output.

I built a new board and the interface
worked the first time. This is one of
the benefits of logic simulation as dis-
cussed before!

I had a look at the data on the
oscilloscope. It looked fine at first,
but there was a signal reflection
glitch on the edges. I found that by
setting the output drive current on
the CPLD pin to a minimum, it
improved the shape of the data and
almost eliminated the ringing. (Refer
to one_pin_waveform.jpg posted on
the Circuit Cellar FTP site for more
information.)

BORLAND C++ BUILDER
I am not a software engineer. I used

Borland’s C++ Builder (BCB) for this
application because it enabled me to
build the software quickly without
having to worry about any of the
details involved with building a Win-
dows application.

One feature of BCB is its ability to
include third-party components. This
saves you time because you don’t have
to build your own. As well as display-
ing and logging temperatures, I wanted
to display current temperatures graph-
ically.

A quick search on the ’Net pointed
me to several companies that provided
thermometer components. I tried the
components from Abakus VCL, and
they integrated easily. Within 20 min-
utes, I was able to incorporate its ther-
mometer component in my applica-
tion. (This would have been quicker if
I had known what I was doing.) The
results are shown in Photo 2.

FTDI INTERFACE
FTDI provides royalty-free drivers

and software examples for a large
number of software development tools
and languages. I parsed the C++
builder example and extracted the
minimum functionality to drive the
interface to the FT245R.

My software is fairly well comment-
ed and provides another example of
how to drive this device. It’s worth
downloading and inspecting the soft-
ware if you’re thinking of using one of
the FTDI devices. It should be fairly
easy to translate this to your compil-
er/language of choice, especially if you
use the other examples on the FTDI
web page.

BASIC APPLICATION
I needed a quick logging application

that would enable me to test the sys-
tem’s effectiveness. When the software
(temp_logger.exe) runs, you have to
open a connection to the FTDI
device. Press the Connect button on
top left. The status label will turn
green (“Connected”) or red (“Can’t
Connect”). If a connection is made,
the temperatures are read once every
second.

The Turn Logging On button initial-
izes the logging. It also updates the
timer component with the value in
the Logging Interval entry box. This
enables you to vary the logging rate
according to the application.

I left in a box and button that
enables a write to the FPGA’s default
register. The value is reflected in the
FPGA evaluation board’s LEDs. It can
be used as a quick test that the inter-
face is working if things don’t appear
to be operating correctly (useful during
debug). The log file (logfile.txt) will
overwrite any previous versions, so it
must be renamed after any logging ses-
sions that will be saved.

As I said before, I’m not a software
engineer or graphical interface design-
er. But this does the job well enough
to perform valid logging runs.

SYSTEM TEST RESULTS
One of my goals for this design

was to see how long it would take
central heating to fill my hot water
tank. I wanted to be able to mini-
mize the amount of time my heating
system is on.

My hot water tank comes with
about 1″ of foam insulation. I found
that it was fairly easy to bore out a
1-cm plug with a piece of tubular
steel. I bored seven holes (equally
spaced down the cylinder) and then

attached eight sensors. I tied one
cable to the hot water outlet pipe at
the top (see Photo 3). I then ran sev-
eral log runs to monitor the boiler’s
temperature as I filled a bath, took a
shower, emptied the tank of hot
water, and turned on the heating sys-
tem. The log files for these runs are
posted on the Circuit Cellar FTP
site. Take a look.

USEABLE SYSTEM
The system works well. The inex-

pensive DS1821 sensors seem to be
accurate and fairly easy to interface. I
drove a sensor over 100′ of ribbon
cable. Refer to Maxim’s web site for
information about driving the 1-Wire
interface over long distances. You
can probably improve upon it.

The FPGA logic footprint (per
DS1821) is 17 logic elements. The
smallest family in Altera’s Cyclone II
family has 4,608 logic elements. The
number of devices that could be driv-
en from most FPGAs will probably
be limited by the number of available
I/O pins. (The total output current
would need to be examined.) This
could be hundreds of devices.

The highlight of the exercise was
the development of the one-pin inter-
face. The interface provides a flexible
way of getting a user interface into an
FPGA using only one pin that’s use-
able on most evaluation/protoboards.

There are a couple of disadvantages
of the current implementation. If the
connector is placed on the target
board incorrectly, then the CPLD and
FPGA outputs will be driving to
ground and potentially damage them.
So, polarized connectors with a lock
tab should be used to stop this from
happening. Only 256 addresses can be
accessed, although the bottom bits of
the command word could be used to
expand this to 4,096 addresses. The
data throughput is fairly low. This
wasn’t a design goal, but if a higher
bandwidth is needed, the interface
protocol can be changed to enable
burst reads or writes from the target.

As usual, this design exercise took
much longer than expected. I would
like to thank my wife Karen for her
support. She entertained our two
girls as I worked on this project! I

2701018Stewart.qxp 12/5/2006 11:47 AM Page 38

http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 39

SOURCES
Abakus VCL
A.Baecker
www.abakusvcl.com

Cyclone II evaluation board and MAX II
CPLD
Altera Corp.
www.altera.com

FT245R IC
Future Technology Devices Interna-
tional
www.ftdichip.com

PulseGuard ESD Suppressor
Littlefuse
www.littelfuse.com

DS1821 Digital thermostat and ther-
mometer
Maxim Integrated Products
www.maxim-ic.com

PROJECT FILES
To download code and additional files,
go to ftp://ftp.circuitcellar.com/pub/
Circuit_Cellar/2007/198.

Photo 3—I waited until my wife was out before I
“installed” the system as I thought cutting the foam might
have been messy! Luckily, it was easy to bore out small
plugs and mount the sensors against the copper cylinder.

Photo 2—The logging application shows the water temperature at different heights in my hot water tank. Note the
obvious temperature gradient down the tank.

Nial Stewart earned a B.Eng. and an
M.Sc. at Queens University in Belfast.
After working for several years in the
telecommunications field, he now
runs an FPGA/hardware development
consultancy business in Edinburgh. In
his spare time, Nial enjoys playing
field hockey, messing about in his

garage, and spending time with his
family and friends. You may contact
Nial at nial@nialstewartdevelop-
ments.co.uk. Type “Circuit Cellar” in
the subject line to avoid spam filters.

2701018Stewart.qxp 12/5/2006 11:47 AM Page 39

mailto:nial@nialstewartdevelopments.co.uk
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2007/198
http://www.abakusvcl.com
http://www.altera.com
http://www.ftdichip.com
http://www.littelfuse.com
http://www.maxim-ic.com
http://www.circuitcellar.com
http://www.pololu.com/ads/cc

40 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

An arbitrary waveform generator, on the
other hand, lets you specify a highly
custom waveform that doesn’t need to
be periodic. The signal value at any
point of time will be according to your
specifications. The application for such
a waveform is where you need to test a
system by stimulating it with a non-
periodic or quasi-periodic input signal.

We made good use of our waveform
generator when we needed a CCD chip
to test our CCD camera controller.
Rather than buy an expensive CCD, we
decided to mimic its behavior. We
accomplished this by programming the
waveform generator to provide a sam-
ple waveform—the kind a CCD chip
generates once it captures an image.

We realized that we couldn’t compete
with the specifications of commercial
arbitrary waveform generators from com-
panies like Tektronix and Agilent. So, we
designed a low-cost alternative that fea-
tures a general-purpose microcontroller

This article is about a system that
was never supposed to be presented on
its own. The system was intended to
be a part of a much bigger project. But
it ended up garnering more peer recog-
nition than the larger system.

Originally, we had intended to
design and showcase a CCD camera
controller, but it soon became clear
that the waveform generation portion
of the controller was the trickiest part
of the project. So, out of compulsion
rather than by design, we decided to
work on a full-blown waveform gener-
ator (an arbitrary one at that). That
decision led to the birth of the Arby,
which is a Zilog eZ80F91 microcon-
troller-based arbitrary waveform gen-
erator (see Photo 1). The system fea-
tures a built-in pseudo-compiler that
executes the waveform codes down-
loaded on it using its Ethernet interface.

WHY ARBITRARY?
Enter any self-respecting electronics

laboratory and you’ll probably see a
waveform generator lying in a corner.
As the name implies, it’s a device that
provides a waveform whose parameters
can be programmed. The parameters are
generally frequency, amplitude, offset,
and so on. Such a device is very useful
for experiments and tests, which require
a particular signal as a stimulus. One
good example would be electronics and
communications-related tests.

Generally, waveform generators are
function generators, which means
they have a few standard and periodic
waveform functions (e.g., sinusoidal,
sawtooth, or triangular) built into them.

for waveform generation instead of dedi-
cated, expensive hardware. We fondly
refer to our system as the poor man’s
arbitrary waveform generator!

SYSTEM IN ACTION
All of the action revolves around a

Zilog eZ80Acclaim! evaluation board.
Among other things, it has an Ether-
net interface built into it. It has a
TCP/IP stack and readymade APIs for
implementing the applications layer of
the TCP/IP stack. We realized that we
could provide a fast PC link to the sys-
tem via the Ethernet without having to
go into the nitty-gritty of the standard.
This enables us to feed in our wave-
form requirements directly from a web
browser on a PC rather than having to
push buttons on the device.

Once we submit our requirements
in a predetermined format, the micro-
controller processes them and pro-
vides the desired 16-bit digital output

FEATURE ARTICLE by Dhananjay Gadre, Pushkar Sareen,
Subodh Prabhu, & Suhas Chakravarty

Arby

The Arby is an arbitrary waveform generator that can easily generate any waveform. The
eZ80F91 microcontroller-based system enables you to input waveform requirements in the
form of an object-based program written in any text editor and transmitted via the Internet.

An Arbitrary Waveform Generator with a Twist

Photo 1—Take a look at the Arby with the programming interface used during the project development stages. The
system generated the waveforms on the logic analyzer.

2701019 gadre.qxp 12/5/2006 12:07 PM Page 40

http://www.circuitcellar.com

on the GPIO pins. A simple
DAC then converts the 16-bit
output to its analog
counterpart.

The software APIs supplied
by Zilog make the implementa-
tion of protocols like HTTP very
easy. This means we can host a
web site on Arby with user con-
trols and status information.
Thus, the system is a truly
Internet-enabled device that is
definitely a first for any kind of
device in this class. The biggest
benefit is remote operation.

Figure 1 shows the entire
system. The flow of control is
from the remote user to the
final output waveform.

INITIAL DEVELOPMENT
To generate the waveform, each of

the 16 GPIO bits must be toggled in a
particular sequence. This sequence
must be either dictated by the digi-
tized form of a sampled analog wave-
form or simply by a purely digital
waveform. The limitation of such a
microcontroller-based approach is that
the frequency of the waveform generat-
ed is limited by the amount of time the
CPU takes to execute the most basic
assembly instruction. This time
includes the time required to fetch the
instruction opcode and any operands
from the memory and the time required
to decode the instruction. This is why a
purely hardware-based solution scores
better in terms of performance.

We faced an even bigger hurdle. The
format in which the user specified his
waveform requirements allowed basic
waveform blocks to be chained and
nested to make a more complex wave-
form. Things like looping (i.e., repeti-
tion of a basic block) were also
allowed. This resulted in a more com-
pact waveform specification and
reduced our effort. The downside was
that this complex chain of waveform
blocks had to be decoded on the fly in
the microcontroller core to find out
the time interval between two consec-
utive toggles of a GPIO pin. This oper-
ation meant extra work for the CPU,
which would increase the minimum
possible interval between two toggles,
hence decreasing the maximum possible

frequency of the generated waveform.
Our first approach was to use the

on-chip timers to perform the task of
interrupting the CPU at suitable inter-
vals of time. Between two such inter-
ruptions, the CPU would drive con-
stant values on each of the GPIO pins.
This interval of time and the constant
value was dependent on the kind of
waveform and therefore had to be cal-
culated from the input requirements.
This meant programming the timers
with a particular timeout value, letting
them run, and again configuring them
with a new timeout value once they
had timed out. Thus, even though the
time-counting operation was being
done through the hardware timers (as
opposed to a do…while loop in soft-
ware), the overhead of programming
the timers after each time-
out affected the toggling
rate adversely. Figure 2
shows this with the help of
a 1-bit waveform.

The next line of thought
was to reduce the input
requirements to a
sequence of time-value
(state) pairs. Whereas the
previous approach did the
time interval calculations
during the waveform gen-
eration, this one did a sort
of preprocessing and
stored the result in the
memory. With the prepro-
cessing done, the waveform
generation could proceed

without the overhead of having
to calculate the intervals. How-
ever, this approach needed huge
amounts of memory to store the
results of the preprocessing. The
reason being that even a short
user specification—which had
some looping and nesting in it—
was equivalent to thousands of
time-value pairs. The memory
required for a decent sized wave-
form exceeded what we had on
chip and onboard. With heavy
hearts, we discarded this promis-
ing but impractical solution.

SURVIVAL OF THE FITTEST
Just when things were look-

ing gloomy, one of us thought
of a compromise between the first and
second approach, one that was quite
practical. We could decode the input
specifications, and instead of time-
value pairs, we could generate the
opcode for an optimized delay loop in
assembly corresponding to the required
time interval. This would be done for
each time interval. Once the decoding
of the entire specification was com-
plete, the CPU Program Counter could
be made to jump to the location where
the opcodes were stored and the proces-
sor would execute them.

The advantage associated with this
approach was that during the genera-
tion of the waveform no calculation
needed to be done to extract the
length of the time interval because
that had been done already. Yet the

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 41

Ethernet hub

Main webserver
with global IP

address

Ethernet link

Ethernet Link

Local
webserver

Waveform
generator

eZ80F91
16-bit Output

Logic analyzer

Desired digital
waveform

D/A
Converter Desired analog

waveform

Oscilloscope

Internet

Web browser
running on PC

F
lo

w
 o

f c
on

tr
ol

Arby

Figure 1—You don’t need to be near the physical device to program the wave-
form. Using a global/LAN IP address, you can download either a prepackaged
or a new waveform developed from scratch.

The timer interrupts CPU at these points . The timer has to be
reloaded with new a timeout value (equal to the length of dark
blue line) after each timeout. This takes a finite amount of time.

Values to be maintained at
GPIO pin by CPU

Figure 2—Take a look at the required waveform (a) and the
actual waveform (b). The dashed lines show where the transition
should have taken place.You can see the differences that arise
from the expected behavior in any waveform generator that decodes
user-described waveform patterns on the fly.

a)

b)

2701019 gadre.qxp 12/5/2006 12:07 PM Page 41

http://www.circuitcellar.com

42 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

memory requirements weren’t as huge
because the results of the preprocess-
ing were stored not in the form of
basic time-value pairs but as loops
written in assembly (their opcodes)
whose iteration count was fixed. Thus,
the core waveform generation code
became a self-modifying one, altering
itself to the needs of the waveform.

LANGUAGE GAP
While developing the Arby’s core,

we also faced an immediate challenge
in providing a mechanism to specify
the waveform required at the user
abstraction layer. Inside the waveform
generator device, the waveform exists as
an optimized loop in assembly. It can’t
be expected of the end users to write the
assembly program because they may not
be conversant with eZ80 assembly. Any-
how, using assembly to specify a com-
plex chain of arbitrary sequences would
be too tedious and would defeat our pur-
pose of designing an easy-to-use device.

Thus, we were led to implement the
waveform at the end-user abstraction
layer using a different platform than

that of its inner implementation.
None of us were conversant enough
with existing compilers such as C++ or
lex and yacc to include it in our project.
Thus, we arrived at the next best option
(which seems to be the best in hind-
sight) of relying on a pseudo-program-
ming language of our own that would
have very limited syntax but support all
possible branching, loop, and control
instructions in specifying a waveform.

BIRTH OF WavCom
The end result was a bare minimum

compiler—lovingly christened WavCom
(short for waveform compiler)—with a
total of five keywords, three delimiters,
and supporting instructions such as
wait, loop, jump, end, nested subroutine
calls, recursion, and even in-line annota-
tions! To ensure minimum memory
usage in the device, the waveform parser
was separated and instead integrated
with the Java applet-based user interface
(which later on acquired the name of
WavCom instead). This solution also led
to minimum data transmission over the
Ethernet interface because only the code
portion of the waveform (with com-
ments and extra spaces removed) was
transmitted to the device.

In the lingo of WavCom, each pro-
gram should have a master chain that
completely describes the required
waveform. The master chain can in
turn invoke further many chains. The
master chain indicated as chain 0 is a

Listing 1—UART.wav demonstrates how a complex waveform like the UART sequence may be easily represented
using WavCom.The example includes a subroutine-type call for a child chain that handles all of the data bits. For
different data patterns, only the data chain must be modified, while the header for start/stop bit remains the same.

% UART.wav

% Main subroutine mimicking a UART
chain 0:

remain 1 120; % stop bit
remain 0 20; % start bit
call 1 1; % data bits generated through a separate

chain
loopend; % repeated endlessly

% Child subroutine handling the data bits
chain 1:

remain 1 40;
remain 0 20;
remain 1 20;
remain 0 20;
remain 1 40;
remain 0 20;

end;

Data bits

Incoming data

Sample strobe

Output

1

0

S
tart

1 2 3 4 5 6 7 8
Stop

0 1 1 0 1 10 1 0

Figure 3—A generic UART waveform is easy to gener-
ate. Using a separate subroutine for data bits allows
any variations in data sequence to be easily integrated
into the master chain sequence.

2701019 gadre.qxp 12/5/2006 12:08 PM Page 42

http://www.circuitcellar.com
http://www.lvr.com
http://www.labjack.com
http://www.xgamestation.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 43

functional equivalent of the main()
function in C/C++ syntax. For the mas-
ter chain there is an option of having a
loopend ending in which case Arby will
continue generating the master chain in
an infinite loop. In all other cases, the
Arby acts like a one-shot waveform gen-
erator. For driving a value on a GPIO bit,
the remain keyword is used. Some of
the keywords require parameters that
are specified in the WavCom file as hex
values. Listing 1 generates a UART
waveform as shown in Figure 3.

The eZ80 assembly code posted on
the Circuit Cellar FTP site is generated
by Arby for the UART WavCom code.
A complete listing of semantics adopt-
ed in WavCom is shown in Table 1.

WavCom TALKS JAVA
Java was chosen as the UI platform

because it’s easy to use, versatile, and
platform/browser independent.

Although we initially had drawn up
some grandiose plans of building a
paintbrush-like application for drawing
waveforms on the web, but barring
that, it was clear that the role of a user
interface was limited to transmitting
the waveform code to the device.

With the development of WavCom
(the waveform language), the UI had
to adorn the role of waveform parser
as well to remove comments and any
extra delimiters.

COMMUNICATION GAP
At the end of the day, the waveform

generation occurs at the device abstrac-
tion layer. A medium is required to
communicate the waveform specifica-
tions from the user abstraction layer. In
traditional waveform generators, a
manual mechanism is provided to con-
trol the wave parameters. With the
advent of the PC, the RS-232 interface

started to be built in for such devices.
In our case, Ethernet serves this role.
At a maximum speed of 100 Mbps, our
project would be an underutilization of
this medium, but the ingenuity of our
idea lies in the applications that are
enabled by using Ethernet instead of a
short RS-232 link, remote on-site
debugging being one of them. We will
cover this in detail in a later section.

At the device abstraction layer, we
used the APIs provided in ZTP—an off-
the-shelf TCP/IP stack implementation
from Zilog—to build the application layer
without having to know much about the
internal TCP/IP stack. On the other side,
a web-browser-based Java applet was used
to open a socket connection to the
Arby device from the user end, thus
bridging the communication gap.

DESIGN BLOCK
We used a microcontroller-based

Table 1—Take a look at all of the semantics adopted in WavCom along with their syntax, description, and sample usage. All multiple non-code word delimiters are replaced with
a comma internally to reduce data size required for transmission over Ethernet. These basic semantics cover most of the major functionalities that can be required in describing
a sequential waveform such as looping, subroutine call, and repeating.

Keywords Syntax/behavior Description Example usage

chain: chain <chain_num>: Indicates start of chain definition. All chains are identified by numbers,
with the number zero being reserved for the master chain.

% master chain

chain 0:

% ordinary chain

chain 23:

end end; Indicates end of a chain definition. With end, the master chain is exe-
cuted only once.

chain 11:

.

.

end;

loopend loopend; An alternate ending available only for the master chain. With loopend,
the master chain is looped into indefinitely by the Arby.

chain 0:

.

.

loopend;

remain remain <hex_value>
<delay_us>

Direction for the output of Arby to acquire a value for the specified
delay.

% for a bit

remain 1 100;

% for a byte

remain 0x1234 20;

call call <chain_num> <itera-
tion_cnt>

Invokes a chain for the specified number of times. Invoking a master
chain is not allowed. The master chain can be looped into only by using
the loopend keyword.

% call #1 thrice

call 1 3;

% call #9 once

call 9 1;

% % Your comment goes here!!! Used for annotation %I’m a comment

; <line contents>; Needs to be present at the end of each line except chain declarations.
Text following this is treated as a comment.

end; comment!

(Line delimiter)

, Word delimiter* This is what all white spaces/tabs are translated to during the compila-
tion stage.

%User wrote

call 4 3;

%WavCom said

call,4,3;
*Indicates semantics internal to WavCom. These are hidden from the end user, and they are included only during the compilation stage.

2701019 gadre.qxp 12/5/2006 12:08 PM Page 43

http://www.circuitcellar.com

44 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

approach to waveform
generation (albeit with a
twist), so we don’t have
much to say about the
hardware. The eZ80F91
kit is at the heart of the
design.

The project includes
three different abstraction
layers. At the user
abstraction layer, the
WavCom UI accepts a
waveform file from end
user, parses it, and trans-
fers the parsed waveform
code over the Ethernet
medium to the device
abstraction layer
(eZ80F91). The device
abstraction layer then
compiles the waveform
code to generate an eZ80
assembly equivalent of
the waveform. The physi-
cal abstraction layer is
then brought into context
by invoking a JP (long
jump) command to the
base address of the wave-
form assembly loop.

An interesting feature
to note here is that during
the actual waveform gen-
eration, the physical abstraction layer
is isolated from the remaining layers.
Thus, the Arby can be made to gener-
ate the previously “downloaded”
waveform in a loop without any con-
nection to the outer world. Newly
shipped versions can be preprogrammed
with a basic test wave pattern.

DATA FLOW
Figure 4 shows how the system

functions. The diagram shows the
user, device, and physical abstraction
layers, respectively. In our case, Ethernet
is the chosen medium of communica-
tion between the first two while the lat-
ter two abstraction layers physically
exist in the same chip. It is the different
forms in which waveform exists inside
them, which merits their classification
as separate abstraction layers. The sec-
ond box represents the interface between
user and device abstraction layers that
may be Ethernet or RS-232 (as supported
by eZ80F91 microcontroller).

The data flow starts with the user
loading the WavCom UI with a wave-
form file. This waveform file describes
the exact waveform as desired by the
end user. The UI parses the contents
of this file and converts it into a datas-
tream for transmission over Ethernet.
On the other end of the Ethernet link,
the Arby recovers chain information
from the data stream received and
allots memory for each chain. In doing
so, the shortest possible assembly
code equivalent to the functionality
described in the corresponding state-
ment is calculated. Using this informa-
tion, a hash table is generated which cor-
relates chain numbers with correspon-
ding offset addresses in the memory.
Finally, using the hash table, the com-
plete waveform (as specified in the
master chain) is converted into an equiv-
alent eZ80 assembly routine. The hash
table is required to replace its corre-
sponding assembly routine for every
chain called inside the master chain.

Once all assembling has
been done, a long jump (JP
mnemonic in eZ80) instruc-
tion is invoked to jump to
the base address of master
chain routine. Thereafter,
the Arby becomes insensi-
tive to any data transmitted
over Ethernet as the assem-
bly routine takes over.
Once in this mode, Arby
can be restored to program-
ming mode only through a
physical reset.

APPLICATIONS
The Arby can be used for

a variety of applications
like any other arbitrary
waveform generator, most-
ly to simulate use case sig-
nals which can either be
serial data with glitches or
noise, or a modulated car-
rier wave or a feedback
from a control system (like
that of an antilock braking
system, etc.). Besides these
applications, which are
common with other wave-
form generators in the
market, this AWG has
some unique applications

because of its Ethernet-enabled inter-
face and programming language style
way of defining the waveform. We
present two such examples to illus-
trate our point.

ARBY—ANYTIME, ANYWHERE
The Ethernet-enabled interface

enables you to work from a distance and
can be embedded in devices that are
installed remotely. (Embedding is possi-
ble because of the low cost.) This can be
used in remote onsite debugging.

Let’s say a manufacturer has
installed this as a testing aid (of course
connected to the appropriate pins and
with appropriate multiplexing) in his
expensive device and sells the pack to a
costumer. Just a day later, something
goes wrong and the device does not
work. Instead of shooting off a tech sup-
port person onto the site, the manufac-
turer can perform few preliminary tests
using the Internet to find out that a cer-
tain pin has been left disconnected by

Start

Connect to the arbitrary waveform generator
using the serial port (VB based) or the

Ethernet (Java applet based)

Click start

Receive file

Memory allotment: Parse through the file and generate a
hash table that contains the offsets of the various chains.

Assembling: Convert all the statements related to the immediate chain entry at
hand in the table into an equivalent small assembly routine using the Zilog

assembly opcodes. Save them in an array starting from the calculated offset.

Are we at the end
of table?

Increment the index of array by a fixed
SEGMENT_SIZE

Go to next chain
definition

Stop

Waveform generation:
Invoke an LJMP to

waveform assembly loop

Ethernet/RS-232

Interface

On PC

On Arby

Y

N

Pre-assembling: Again, parse through the file and generate a table,
with the hash table containing information about each statement in the

program, such as for how much time to remain high/low or which to call.

User layer

Device layers

Physical
abstraction

layer

Figure 4—Take a look at the data flow at various abstraction layers inside Arby. There are
different abstraction layers: user, device, and physical. The Ethernet/RS-232 interface pro-
vides connectivity between the user and device layers.

2701019 gadre.qxp 12/5/2006 12:08 PM Page 44

http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 45

PROJECT FILES
To download code and resources, go to
ftp://ftp.circuitcellar.com/pub/Circuit_
Cellar/2007/198.

SOURCE
eZ80F91 Microcontroller
Zilog, Inc.
www.zilog.com

Dhananjay Gadre (dvgadre@nsit.ac.in)
is an assistant professor in the Electron-
ics and Communication Engineering
Division at the Netaji Subhas Institute
of Technology in New Delhi, India.

Pushkar Sareen (pushkar.sareen@gmail.
com) was a student in the Electronics

Subodh Prabhu (subodh.prabhu@gmail.
com) was a student in the Electronics
and Communication Engineering Divi-
sion at NSIT, New Delhi, from 2001 to
2005. Subodh works for a reputable firm
in the semiconductor industry.

Suhas Chakravarty (suhas.chakravarty@
gmail.com) was a student in the Elec-
tronics and Communication Engineering
Division at NSIT, New Delhi, from 2001
to 2005. Suhas works for a reputable firm
in the semiconductor industry.

the user. The problem is thus resolved
without moving anyone an inch closer
to the customer’s place.

Now let’s suppose that there’s a
faulty device module that the manufac-
turer must replace and a tech support
person is on the way. While on his
way, the support person uses his Wi-Fi-
enabled laptop to run an extensive set
of tests to verify that all modules shar-
ing either interface with the faulty mod-
ule are working well. This is done by
replacing the faulty module with its cor-
responding waveform pattern for each of
the shared interfaces. By the time the
support person reaches his destination,
he has an all-knowing smile on his face.

OO WAVEFORMS
The programming style of specifying

the waveform gives incredible easiness
in specifying complex waveforms,
which may be tiresome to specify oth-
erwise. You can actually deal with
waveforms in terms of real objects (as
in other programming languages). This
creates a higher layer of abstraction
while dealing with waveforms as com-

pared to the earlier way.
If you need to make a small package

for Morse code, you can simply define
few small constructs of small waves
(chains) and call them dots and dash-
es. Then these could be used to make
a little complex construct of letters
and numerals. Once this is there as a
library, you can seamlessly write a
top-level construct (waveform) and
call these letters and numerals in
order to have any desired message
transfer. If the physical layer of trans-
mit changes—say, the message is now
transmitted through amplitude modu-
lation instead of digital logic—the
top-level construct will remain
unchanged with only the library
requiring changes. I

and Communication Engineering Divi-
sion at NSIT, New Delhi, from 2001 to
2005. Pushkar works for a reputable
firm in the semiconductor industry.

2701019 gadre.qxp 12/5/2006 12:08 PM Page 45

ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2007/198
http://www.zilog.com
mailto:dvgadre@nsit.ac.in
http://www.circuitcellar.com
mailto:pushkar.sareen@gmail.com
mailto:subodh.prabhu@gmail.com
mailto:suhas.chakravarty@gmail.com
http://www.emacinc.com
http://www.tekind.com
http://www.tekrfidshop.com

kind of inductor should you use?
I made measurements to determine

this information. For this article, I
used three types of inductors with the
circuit shown in Figure 3. The input
signal was adjusted (frequency and
duty cycle) to obtain maximum out-
put voltage into a 1-kΩ load, which
corresponds to the maximum power
available.

I tested the circuit using 1-mH and
200-μH inductors. Two different 1-mH
inductors were used. One was a small
inductor about the size of a 0.5-W
resistor. The other was a large induc-
tor (like the kind you used to be able
to buy at RadioShack) that was about
2″ long and 0.5″ in diameter. Table 1
shows the results. THI and TLO are the
high and low periods of the input sig-
nal. VOUT is the output voltage, and POUT

is the power delivered into the 1-kΩ
load resistor. Two conclusions can be
drawn from this table. First, the 200-μH
inductor requires a higher drive fre-
quency for maximum output. In gen-
eral, smaller inductors provide faster
response to load changes, which is
part of the reason they are used in

46 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

age spike that exceeds the supply volt-
age. Obviously, a practical circuit will
not use a mechanical switch; it will
use a transistor instead.

In many circuits, such as a transis-
tor driving a relay coil, this voltage
can be high enough to destroy the
transistor. It is usually clamped to the
supply or to some other voltage
through a diode. However, if the volt-
age is rectified with a diode and fil-
tered with a capacitor, the result will
be a positive voltage higher than the
supply. The magnitude of the resulting
voltage depends on the characteristics
of the inductor, the speed of the tran-
sistor switch, and the frequency and
duty cycle of the input signal.

PRACTICAL CIRCUIT
Figure 3 shows an NPN transistor

replacing the switch. The base of the
transistor is driven by a pulse train to
turn the transistor on and off. When
the transistor is on, the low side of the
inductor is connected to ground. When
the transistor switches off, the low side
of the inductor produces the positive
voltage spike that is the source for the
output voltage. This is a simple con-
cept, but there’s a problem. What does
the input signal look like, and what

Every once in a while, your designs
need a voltage converter to produce a
voltage higher than the available sup-
ply voltage. For example, you may
have a high-side MOSFET driver that
switches the supply voltage to a load
such as a motor (see Figure 1). Because
the SOURCE pin of the MOSFET will
be at the supply voltage when the
MOSFET turns on, the MOSFET will
require a gate drive voltage higher
than the supply.

Another possible use for voltage
converters is to supply a negative volt-
age to an op-amp in a single-supply
system or a positive voltage exceeding
the supply voltage to an op-amp.
Other uses include generating bias
voltages to LCDs or generating volt-
ages for RS-232 or other interface
devices.

One way to generate a positive volt-
age is shown in Figure 2. Here, a
switch connects one side of an induc-
tor to ground. When the switch closes,
current builds in the inductor. When
the switch opens, the energy stored in
the inductor produces a positive volt-

FEATURE ARTICLE by Stuart Ball

Voltage Solutions

Adding voltages to your designs doesn’t have to be a complicated task. Stuart explains volt-
age converter technology and describes the basic principles behind the use of voltage con-
verters in simple designs.

Harness the Power of Voltage Converters

Figure 1—A high-side MOSFET that switches the sup-
ply voltage to a load requires a gate drive voltage high-
er than the supply.

Figure 2—This is a simple switching converter. When
the switch closes, current flows through the inductor.
When the switch opens, the “flyback” voltage rises high-
er than the supply. This voltage can be rectified and fil-
tered to provide a DC voltage exceeding the supply.

Figure 3—This practical switching converter uses an
NPN transistor to switch the inductor current on and off.
The frequency and duty cycle of the input signal control
the amount of power delivered to the load.

2701015ball.qxp 12/5/2006 1:03 PM Page 46

http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 47

commercial voltage converters. But
the 1-mH inductor is probably more
suitable to a system where the input
may be driven by a microcontroller.

The second result you see in the
table is that the larger 1-mH inductor
is capable of producing more power
than the smaller 1-mH inductor, even
though both are the same value. The
larger inductor has larger windings
and an air core. The smaller inductor
is able to get high inductance in a
small package by using a ferrite core.
When used in a voltage booster cir-
cuit, losses in the core of the smaller
inductor prevent it from storing as
much energy as the larger inductor, so
the resulting power output is smaller.

Many commercial power inductors
made for power switching circuits will
also use a ferrite core. However, they
are designed to avoid saturation at the
rated power levels so the problem
exhibited here does not occur.

For a given frequency, the duty
cycle of the input signal also affects
the output. For example, using the
smaller inductor but driving it with a
10-μs high period and 8-μs low period
results in an output voltage of 8.23 V.
For maximum power output, the high
input period will last just long enough
for the inductor to reach maximum
current and then the transistor would
be turned off.

Adjusting the duty cycle either side
of the optimum value will reduce the
output voltage. However, if the high
portion of the signal waveform is too
long, the transistor wastes power by
drawing current through the inductor
after it has saturated. For maximum
efficiency, the output voltage will be
controlled by making the high period
shorter than optimum, thereby not
allowing the inductor to reach maxi-
mum current (and store maximum
energy).

Other factors affect the output
power as well, including the transis-
tor’s turnoff time. MOSFET transistors
turn on and off very quickly and have
minimal losses in the ON state if the
gate is driven with sufficient current,
which is why commercial switching
supplies use them. In the circuit
shown in Figure 3, some increase in
output power can be obtained by using

a smaller resistor for
R1 or placing a 180-pF
capacitor across R1.
The capacitor increases
the transistor switching
speed by allowing the
base charge to be added
and removed more
quickly. The cost is
increased current requirements for the
circuit providing the input signal.

NEGATIVE VOLTAGES
Figure 4 shows a version of the

same circuit that produces a negative
voltage that’s suitable for biasing an
LCD or driving an op-amp. This cir-
cuit is a mirror of the previous circuit.
A PNP switch connects the inductor
to the supply. When the transistor
turns off, a negative voltage is pro-
duced that is rectified and filtered. Note
that the output filtering capacitor has
the positive terminal grounded.

The negative voltage generator uses
a PNP transistor, so the output charac-
teristics will be somewhat different.
For a given inductor, the available
power may vary due to transistor
switching speeds. If you are attempting
to produce symmetrical positive and
negative voltages (say, for an op-amp),
you’ll want to be sure you can get the
voltage you need from both versions of
the circuit.

OUTPUT CIRCUIT
The output capacitors in these cir-

cuits are 1 μF, which is suitable for
testing. Some applications will need a
larger capacitor. For example, driving
the gate of a MOSFET will typically
require significant current for fast
switching. In that case, you’ll want a

larger capacitor to provide the high
initial current.

The 1-kΩ load resistor was used in
the test circuit as an easy way to
determine the optimum frequency and
duty cycle for each inductor. However,
in most practical circuits, you will
want to generate a specific voltage,
not a specific power into a fixed load.
The simplest way to do this is to place
a Zener diode across the output (see
Figure 5). The Zener diode will always
be drawing current from the output
capacitor. A commercial switching
supply or DC/DC converter will mon-
itor the output voltage and adjust the
duty cycle of the drive signal to main-
tain a constant voltage.

As you can see in Figure 5, you can
also place the Zener diode from the
transistor collector to ground, but you
will need a Zener diode that is about
0.6 V higher to compensate for the for-
ward voltage drop across diode D1. Of
course, the negative voltage generator
would have the Zener diode reversed
(in either configuration) with the cath-
ode connected to ground.

A note of caution here: The 1-kΩ
load in the prototype circuit was used
because it draws enough current to
effectively clamp the output voltage to
a safe value. However, with the right
combination of transistor, inductor,
and drive signal, it’s possible to gener-
ate voltages high enough to destroy
almost any transistor. Unless you real-
ly know what you are doing, I do not
recommend operating these circuits
without a Zener diode or some other
voltage-limiting device on the output.

You may notice that the Zener
diode doesn’t have a current-limiting
resistor. In this case, the Zener diode
is used both to prevent transistor dam-
age and to regulate the output. The
circuit shown doesn’t generate suffi-
cient power to damage a 0.5- or 1-W
Zener diode. However, if you want to

Inductor THI TLO Frequency VOUT P OUT

Small 13 µs 5 µs 55.5 kHz 10.4 108 mW

Large 13 µs 4 µs 59 kHz 15.6 240 mW

200 µH 3.5 µs 1.2 µs 212 kHz 15.7 246 mW

Table 1—Take a look at the voltage boost inductor duty cycle measure-
ments. This is the high period of the input signal. TLO is the low period. VOUT is
the voltage across the 1-kΩ load resistor. POUT is total power into 1-Ω load
resistor (milliwatts).

Figure 4—A PNP transistor is used to generate nega-
tive voltages. The circuit is the complement of the posi-
tive generator, switching the inductor to the supply and
rectifying a negative voltage peak.

2701015ball.qxp 12/5/2006 1:03 PM Page 47

http://www.circuitcellar.com

48 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

generate significantly higher power,
you may want a high-voltage Zener
from the transistor collector to ground
to prevent transistor damage and a
low-leakage regulator at the output to
generate the final voltage (see Figure 6).
The transistor-protecting Zener diode
needs to be a large enough value to
prevent transistor damage and low
enough to avoid exceeding the maxi-
mum input voltage of the regulator.
At higher power levels, it makes more
sense to use a commercial voltage
booster circuit or a feedback circuit to
control the voltage by varying the
duty cycle.

INPUT DRIVE
The test circuit here was driven with

a 555 timer that’s similar to what you
might use in an embedded application.
The circuit was also tested with the
OCR1B output of an Atmel
ATmega8515 microcontroller. This is
an output capture signal from an inter-
nal 16-bit timer and can be adjusted to
produce varying frequency and duty
cycle outputs.

You could also drive it from the
PWM or timer output of about any
microprocessor. In fact, you could use
the microprocessor to implement a
full feedback-controlled regulated sup-
ply by monitoring the output voltage
with an ADC and adjusting the PWM
duty cycle accordingly. However, in
most practical applications, the
amount of CPU resources needed
makes it more practical to use an off-
the-shelf solution if you can’t live
with a simple Zener limiter.

CHARGE PUMP
The inductive voltage booster has

some problems, including the EMI
generated by the switching circuit and
the possibility of destroying the tran-

sistor if things don’t work right. In
addition, the circuit will draw power
even when unloaded, which may be a
problem for battery-operated equip-
ment. It is possible to build a voltage
booster using capacitors instead of
inductors.

Figure 7 shows a voltage doubler.
This type of circuit has been used for
years to generate high voltages in tele-
visions. The way this circuit works is
that when the input signal is at
ground, C6 charges to the supply volt-
age (minus the forward drop across
D4). When the input signal goes high,
the negative end of C6 is at the signal
value (typically about the supply volt-
age). Because C6 is still charged, the
positive end is at 2× the supply volt-
age, which causes C5 to charge
through D3. After several cycles of the
input signal, C5 will be charged to
about twice the supply voltage (minus
the diode drops).

One of the circuit’s advantages is
that the output voltage can’t go out of
range. It will be only twice the supply
voltage. However, a drawback is that
half the output power has to come
from the input signal. To generate 1 W
of output power, the signal has to be
able to drive adequate current into the
input, which translates to a driver that
can both source and sink significant
current. For this reason, the voltage
doubler is typically used to drive cir-
cuits that require very low current,
such as bias voltages or supply volt-
ages to CMOS op-amps.

The circuit shown, using 1-µF
capacitors and driven by a source with
a 100-Ω series resistor, produces 8.5 V
with no load and 7.3 V with a 10-kΩ
load. The driving signal level drops
when the load is applied. So, using a
voltage doubler to produce any signifi-
cant current requires a driver that can
maintain the drive voltage with full
load applied to the doubler output.

Since the voltage doubler depends
on the amplitude of the drive signal to
produce the output voltage, it is
important to provide a drive signal
that swings as close as possible to the
positive supply. This will produce the
maximum output voltage.

Capacitor sizes depend on input fre-
quency, although larger capacitors are
not an issue as long as the signal
source can provide sufficient current
to charge them at the drive frequency.
The circuit was tested with 1-µF elec-
trolytics and the output was the same
over a wide range of signal frequencies
(about 10 to 100 kHz). One advantage
associated with the charge pump
approach is that the circuit is more
forgiving of the input signal. Just give
it a signal with a 50% duty cycle in
the appropriate (wide) range, and you
will get full output. These circuits are
very easy to drive from the timer out-
put of a microprocessor, although you
will need high-current drivers to gener-
ate any significant power. You can
increase the output voltage of this cir-
cuit by using Schottky diodes, which
have a lower forward voltage drop than
the standard rectifier diodes shown.

The circuit can be used to provide
voltage that is higher than any avail-
able positive voltage by the value of
the logic supply (minus diode drops).
For example, if the anode of diode D4
were connected to 20 V instead of 5 V,
the output voltage would be about 24 V
with a 0- to 5-V input signal. The only
catch is that the parts have to be sized
for the voltage, and the driving source
has to be able to sink the current
needed to charge the input capacitor
from the increased voltage, even dur-
ing system start-up.

ISOLATED VOLTAGE SOLUTIONS
Sometimes you need to generate a

voltage that’s isolated from your con-
trol system. An example of this would
be interfacing to another system that
operates from an unsafe high voltage
or from a system in which there is sig-
nificant difference in ground potential
(enough to make a common ground
connection difficult or impossible). In
such a case, you need an isolated volt-
age converter.

The key component of isolated volt-

Figure 6—For higher power applications, use a transis-
tor-protecting Zener diode followed by a regulator. This
improves the circuit’s efficiency.

Figure 5—Adding a Zener diode to the output is a sim-
ple way to produce a fixed voltage. This is not the most
efficient method because it wastes some power.You
can also attach the Zener diode at the collector of the
drive transistor (from the anode of D7 to ground).

2701015ball.qxp 12/5/2006 1:03 PM Page 48

http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 49

age converters is a transformer (see
Figure 8). The transformer isolates the
voltage-generating side of the circuit
from the load because there is no
direct connection between the two.
The switching supply in your PC is of
this type, except the circuitry is fairly
complicated. The most impractical
part of designing your own isolated
voltage converter is the transformer
itself. Most switching supplies use
custom transformers with multiple
windings to maximize efficiency.

In general, isolated supplies are easi-
er bought than built. If you must roll
your own isolated supply, you can use
the voltage converter circuit in Figure
3 to drive the primary. But finding a
suitable transformer may be difficult.
It may be easier to use an off-the-shelf
transformer and drive it with a sine
signal, either synthesized from the
control microprocessor or using dis-
crete transistors and op-amps. This
will not be as efficient, but it is proba-
bly the easiest way to get an isolated
voltage using a standard transformer.

Keep in mind that isolated trans-
formers are not perfectly isolating.
The transformer has a breakdown
voltage that is a function of the core,
the winding insulation, and other fac-
tors. If the voltage between the pri-
mary and secondary exceeds this
value, the transformer may break
down and the primary and secondary
sides will be connected, either perma-
nently in the form of a short, or
momentarily in the form of an arc.

The other issue with transformers is
capacitance. There is significant
capacitance between the primary and
secondary sides of a transformer. Gen-
erally, the larger the transformer or
the lower the operating frequency for
which it’s designed, the higher the
capacitance. As a consequence, high-
frequency energy (e.g., RF energy) may
be transferred from the secondary side

back to the primary.

OFF-THE-SHELF SOLUTIONS
The purpose of this article has been

to describe the basic principles of
using voltage converters in simple
designs. Off-the-shelf solutions are
also available (e.g., DC/DC converters
from Wall Industries). For driving
MOSFETs, there are integrated cir-
cuits with internal charge pumps such
as International Rectifier’s IR21xx
series. These devices provide both gate
drive circuitry and the ability to drive
a high-voltage MOSFET from a lower
voltage signal source.

Off-the-shelf charge pumps (e.g., the
Maxim MAX1682) are also available.
These devices use actively switched
transistors instead of passive diodes
for better efficiency. The MAX1682
can produce up to 45 mA of current.

ADD VOLTAGE
As you’ve learned, adding voltages

to your designs is not a complicated
task. By selecting the proper compo-
nents, you can match a voltage boost-
er circuit to your power and drive
requirements. Even if you never roll
your own voltage booster, you now
understand the trade-offs and issues
involved in designing one. I

Figure 7—This voltage doubler circuit will produce
approximately twice the supply voltage at the output. It
is most suitable for low-current applications.

Figure 8—An isolated voltage converter nearly always
uses a transformer to isolate the driving source from
the load.

SOURCE
IR21xx IC series
International Rectifier
www.irf.com

Stuart Ball (stuart@stuartball.com) is an
engineer at Seagate Technologies with
more than 20 years of experience work-
ing with embedded systems. He earned
a B.S.E.E. from the University of Mis-
souri-Columbia and an M.B.A. from
Regis University in Denver. Stuart has
written three books about embedded
systems (www.elsevier.com/newnes).

Circuit Cellar design con-
test entrants have received
thousands of valuable
development tools and
product samples. Because
of their contest participa-
tion, these engineers
receive advance e-mail
notice from Circuit Cellar
as soon as new samples
become available. Now you
too can benefit from this
early notification.

Welcome to the Designer's
Notification Network.
Print subscribers are
invited to join the Network
for advance notice about
our new sample distribu-
tion programs.

Designer's Notification Network

2701015ball.qxp 12/5/2006 1:03 PM Page 49

mailto:stuart@stuartball.com
http://www.elsevier.com
http://www.irf.com
http://www.circuitcellar.com
http://www.circuitcellar.com/network

Laboratories USB debug adapter. A
ZMD44102 starter board and the USB
debug adapter are shown in Photo 1.

A 4-KB demonstration version of
Keil’s PK51 C compiler is included
with the starter kit bundle. However,
you’re going to need the full version of
the Keil PK51 C compiler to fully uti-
lize the supporting C source code that
comes with the starter kit. For those
of you that want ony to evaluate the
ZMD radio or the C8051F120 micro-
controller, all of the C source code
examples are also provided as ready-
to-program hex files that you can push
down into the C8051F120 using the
included USB debug adapter and
Silicon Laboratories flash memory
programming utility.

The Daintree Networks SNA pack-
age is a professional IEEE 802.15.4
packet sniffer. Everything you need to
know about a transmitted IEEE
802.15.4 packet is available via the
SNA’s application windowpanes.
Fortunately, the SNA demonstration
included with the sensor starter kit is

50 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

experiences. So, I’ll shut up and get on
with describing the wireless sensor
starter kit and all of its sidekicks.

ROLL CALL
I have the starter kit bundle version

of the wireless sensor starter kit. That
simply means that my kit includes an
extra ZMD44102 starter board that
can be employed as a sniffer capture
module or an extra IEEE 802.15.4
node. The ZMD44102 starter board
contains a C8051F120 microcontroller
with an associated JTAG interface
and, of course, a ZMD44102 IEEE
802.15.4-compliant/ZigBee-ready sin-
gle-chip 900-MHz transceiver.

Because the word “sensor” is syn-
onymous with ZigBee and IEEE
802.15.4, the ZMD folks included one
of their TSic 106 precision tempera-
ture sensors on each of the ZMD44102
starter boards. The Silicon Laboratories
portion of the kit bundle includes the
C8051F120 microcontrollers, Silicon
Laboratories’s driver package for the
Keil PK51 C compiler, and a Silicon

I’ve become a student of IEEE
802.15.4. The more I learn about it,
the more fun I have with it. I recently
found a really good IEEE 802.15.4
development kit that puts all of the
elements of IEEE 802.15.4 together in
an easy-to-swallow capsule.

I’m an absolute fool about anything
Ethernet. And based on the way things
are going, I’m going to the mad house
with IEEE 802.15.4 as well. It’s time to
take ZigBee and the IEEE 802.15.4
standard seriously as more and more
big-time electronic corporations are put-
ting money and effort behind marketing
real ZigBee solutions. I really get tired of
reading the same old words about what
ZigBee is good for. However, even
though every ZigBee player is pounding
in the way that ZigBee will fit perfectly
into such things as home automation
and factory floor sensor networks,
you’ve got to give it to them because
what they’re bellowing about is true.
The concept of ZigBee coupled with
IEEE 802.15.4 is a beautiful thing.

Speaking of beautiful things, the
ZMD wireless sensor starter kit
is just that. I recently had the
opportunity to test drive the
ZMD 900-MHz radio develop-
ment kit, which includes the
Silicon Laboratories C8051F120
microcontroller and associated
programming/debugging tools.
The most surprising addition to
the kit is a 30-day version of
Daintree Networks sensor net-
work analyzer (SNA). I say sur-
prising because I didn’t expect
to see what I saw after I loaded
it up. Needless to say, I was
compelled to write about my

Dive Into the ZigBee Pool
APPLIED PCs by Fred Eady

You don’t necessarily need a ZigBee stack to move small messages from point A to point B.
Fred shows you a simple way to get moving with the ZMD wireless sensor starter kit.

Photo 1a—As development kit boards go, this one is pretty clean. The ZMD44102 doesn’t need much of anything hung on
its pins to do its job, and the same can be said of the Silicon Laboratories C8051F120 microcontroller. b—This little device
was also a pleasant surprise. It was very easy to integrate into the Keil µVision3 scheme. And, it’s simple and it works.

An Easy Way to Start Moving Messages

b)a)

2701012-eady.qxp 12/5/2006 11:37 AM Page 50

http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 51

the professional ver-
sion, which enables
you not only to see
the bits, but also to
visualize a ZigBee-
enabled IEEE 802.15.4
network.

The ZMD44102
CMOS transceiver is
an 868.3/902-to-928-
MHz band single-chip
multichannel IEEE
802.15.4-compatible
system-on-chip
device. The low-
power 40-Kbps
ZMD44102 transceiv-
er is also equipped
with a complete IEEE
802.15.4-compliant
PHY and a thin MAC
that is implemented in hardware. Most
IEEE 802.15.4/ZigBee transceivers use a
SPI portal to communicate a host
microcontroller.

The ZMD44102 employs SPI, but it
is also capable of passing data and
commands over a parallel interface.
Another interesting feature of the
ZMD44102 is the use of dual clocks.
The 24-MHz system clock is used to
clock the digital core and a separate
32.768-kHz clock, which supports
Sleep and Power Down modes, acts as
an RTC. Both clocks, in one manner or
another, support a set of IEEE 802.15.4-
oriented timers that are integrated into
the ZMD44102’s HW-MAC.

I’ve been reading and rereading the
IEEE 802.15.4 standards document. It
is refreshing to see that the wireless
sensor starter kit documentation uses
the IEEE 802.15.4 standard’s nomen-
clature in the datasheet and user man-
ual language. I’ll do the same within
this column when I can.

The IEEE 802.15.4 stuff combined
with the ZMD44102 stuff makes for
days of enjoyable reading. The good
news is that the ZMD44102 part and
its associated documentation are very
logical. If you pay attention (no speed
reading), you can read it all in a dark
room as the proverbial light bulb will
be illuminating a bunch.

LET’S DANCE
I had no problems getting every-

thing set up and ready. The demo
application code and Silicon
Laboratories drivers that came with
my wireless sensor starter kit were
designed to be used with Keil’s
µVision2 environment. I have the lat-
est version of the Keil PK51 C compil-
er, which is built around µVision3. I
found that the Silicon Laboratories
USB debug adapter needed to have the
µVision3 drivers loaded in order to
turn on the recognition of the USB
debug adapter’s USB interface from

within the Keil PK51
C compiler’s debug
utility’s set-up win-
dows.

Once I got the
PK51 C compiler to
recognize the USB
debug adapter, I per-
formed a test compile
of the basic commu-
nication software
(BCS) source that
came with the wire-
less sensor starter kit.
Everything came out
lovely, and I punched
the µVision3’s Debug
button to push my
new BCS hex file into
the C8051F120’s flash
memory. I clicked Go

and was pleasantly surprised when the
menu in Photo 2 appeared in my Tera
Term Pro window.

With the PK51 C compiler/USB
debug adapter/BCS source code inte-
gration behind me, I moved on to the
next task of preparing the SNA and
the IEEE 802.15.4 frame capture hard-
ware. I decided to use the third
ZMD44102 starter board as the frame
capture hardware for the SNA. A pre-
compiled and ready-to-load Daintree
driver hex file was included with the

Photo 2—This is a playground. We can do anything we want to do here with little fear. For instance, we
can transmit a raw IEEE 802.15.4 packet and receive it at the other end node if we desire.

Photo 3—I remember doing this with raw Ethernet frames. It is really interesting what sniffers try to do with the
crap they sometimes may get. Even with the obvious 01-02-03-04 number sequence, the Daintree Networks SNA
still gives a good picture of what’s really supposed to be going on here.

2701012-eady.qxp 12/5/2006 11:37 AM Page 51

http://www.circuitcellar.com

52 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

ZMD wireless sensor starter kit. All I had
to do was load up the Silicon Laboratories
stand-alone flash memory programming
utility, which also was a component of
the wireless sensor starter kit, and drop
the SNA driver code into the
C8051F120 flash memory on the newly
tasked IEEE 802.15.4 capture module.

There’s plenty of good coding fodder
to be found in the BCS source. Thus,
my goal was to ultimately build a reg-
ulation IEEE 802.15.4 packet using
BCS functions and send it along its
way from one of the ZMD44102
starter boards. While the bits were fly-
ing, I captured them all with the SNA.

BITS IN THE WIND
I decided to throw caution to the

wind (along with a few bits) and use
the BCS “transmit unslotted mode” to
fling a message out of the
ZMD44102’s cute little 900-MHz rub-
ber ducky antenna. I recorded the
event for posterity with the SNA and
posted the resultant capture in Photo 3.
There is no official ZigBee network.
The visualization feature of the SNA
couldn’t draw up a pretty picture of
the network. Besides, there really was-
n’t a network at that point because I
was shooting IEEE 802.15.4 skeet with
an SNA shotgun.

If you analyze the contents of Photo 3,
the actual frame length calculation,
which is gathered from the PHY proto-
col data unit (PPDU) header area, is cor-
rect. Including the pair of CRC bytes
that are not shown at the end of the hex
dump, I count 35 octets in the hex
dump area of Photo 3. How about you?

The Link Quality Indication byte is
maxed out at 0xFF (255), as it should
be. The IEEE 802.15.4 capture module
is less than 1 m from the transmitting
station. It also looks like the Frame
Control word was meant to be accu-
rate because the Destination Addressing
and Source Addressing modes are 16 bits
in length. All of the addresses are obvi-
ously simply enumerated.

The SNA goes totally whacky on
the text message because it thinks this
is stuff destined for the network
(NWK) layer of a ZigBee stack. In fact,
there is absolutely no ZigBee in this
gaggle of bits at all. Everything you see
is actually IEEE 802.15.4 PHY and

Listing 1—The ZMD wireless sensor starter kit source code set is very well written. The use of IEEE 802.15.4
terms makes the code self-documenting. Everything you want to do with a ZMD44102 can begin with the func-
tions contained with the BCS source code. I inserted the root ZMD function code inside of the
plmeSetRequest and cmdUnslottedTX/cmdUnslottedRX functions for clarity.

void cmdUnslottedTx (void)
{
unsigned char ack;
unsigned char channel;
unsigned char tx_data[125];
unsigned char payload_length = 0;
unsigned int destpanid,destaddr;
destpanid = 0x5050;
destaddr = 0x4444;
channel = 0x01;
ack = 0x01; //request an ACK from the receiver
tx_data[0] = 0xAA;
payload_length = 0x01;
plmeSetRequest(phyCurrentChannel, &channel);
//* FROM plmeSetRequest/START
switch (PIBAttribute)
{

case phyCurrentChannel:
if (*(UINT8*)PIBAttributeValue > 10) return PHY_INVALID_PARAMETER;
phyPIB.phyCurrentChannel = *(UINT8*)PIBAttributeValue;
zmdWriteReg(PHY_CHANNEL, phyPIB.phyCurrentChannel);
break;

//* FROM plmeSetRequest/END
zmdUnslottedTx(ack, tx_data, payload_length, destpanid, destaddr,

AM_SHORT_ADDR);
//* FROM zmdUnslottedTX function/START
if (addr_mode == AM_SHORT_ADDR)
{

zmdWriteReg(MHR_TX_DST_PAN_ID_1, LOW_BYTE(dest_pan_id));
zmdWriteReg(MHR_TX_DST_PAN_ID_2, HIGH_BYTE(dest_pan_id));

zmdWriteReg(MHR_TX_DST_ADDR16_1, LOW_BYTE(dest_addr16));
zmdWriteReg(MHR_TX_DST_ADDR16_2, HIGH_BYTE(dest_addr16));

zmdWriteReg(MHR_TX_SRC_ADDR16_1,LOW_BYTE(macPIB.macShortAddress));
zmdWriteReg(MHR_TX_SRC_ADDR16_2,HIGH_BYTE(macPIB.macShortAddress));

//SET HIGH BYTE OF FRAME CONTROL WORD
zmdWriteReg(MHR_TX_FC_2, FT_DST_ADDR_MODE_16 | FT_SRC_ADDR_MODE_16);

}
if (ack == ACK_REQUEST)

//SET LOW BYTE OF FRAME CONTROL WORD
zmdWriteReg(MHR_TX_FC_1, FT_DATA | FT_ACK_REQUEST | FT_INTRA_PAN);
//Assemble the packet with the length byte first,
//then the rest of the packet
zmdWriteTxFifo(payload_length, payload);
//SEND IT!
zmdWriteReg(MAC_CTRL, MC_TX_ON);
//* FROM zmd UnslottedTX function/END

}

void cmdUnslottedRx (void)
{

UINT8 channel;
UBYTE data_buffer[aMaxPHYPacketSize];
UBYTE i,j;
channel = 0x01;
plmeSetRequest(phyCurrentChannel, &channel);
while (1)
{
if (RX_FAILED == zmdUnslottedRx(&data_buffer, TRUE))

break;
else
{

wait_ms(5);
{ (continued)

2701012-eady.qxp 12/5/2006 11:37 AM Page 52

http://www.circuitcellar.com

MAC related. All that was done here
was stuff the Frame Control bits,
make up some addressing words, stick
a text message behind it all, and cram
it into the ZMD44102 transmit FIFO.
The ZMD44102 added the necessary
encapsulation—preamble, start of frame
delimiter (SFD), and CRC—and pushed
the entire mess out the antenna pipe.

NO HARM, NO FOUL
There is absolutely nothing wrong

with what I did. As long as the receiv-
er and the receiving application know
what to do with the incoming frame,
who cares about its format? For
instance, the receiver could have sim-
ply parsed or counted through the
frame control and addressing fields of
the IEEE 802.15.4 frame I sent and
picked out what it wanted to use of the
text message. Or, if there were more
than one receiver, the address informa-
tion could also have been parsed and
logically analyzed to determine who
the message was really aimed at. That’s
essentially what a ZigBee stack does,
but it does it quite a bit more elegantly.

Let’s be a bit more elegant as well. I
say you build up a simple unslotted
network and send a meaningful byte
or two over it. The term “unslotted”
means that the little ad hoc IEEE
802.15.4 network will not use bea-
coning, which means there will be no
special, exclusive or repetitive time slots
allocated for data transfer timed to a
recurring beacon signal. In other words,
if the coast is clear, fire when ready.

All you’ll really need to do is to deter-
mine if you want an acknowledgement
for the transmission, identify some
specific transmitter and receiver PAN
and node addresses, specify the length of
the data you wish to send, and plug in
your data. To be honest, the ZMD folks
have done most of the work. Once you
have nailed down who and what, all you

have to do is call upon some of the
functions included within the BCS.

OK. You definitely want an
acknowledgement because that will
force the receiving MAC to generate
some ACK traffic. Starting from out-
side in, let’s designate a WPAN
address of ASCII “PP,” which equates
to a 16-bit WPAN address of 0x5050.
The transmitter (source) address will
be ASCII “SS” or 0x5353, and you’ll set
the receiver (destination) address to
ASCII DD (0x4444). I failed to mention
that it may be nice to choose a channel
in the 915 MHz ISM frequency band to
operate on. So, let’s go with channel 1.

CODING THE SOURCE NODE
The initialization of the ZMD44102

starter boards is taken care of up front
in the main function of the BCS. So,
rather than fix something that isn’t
broken, I left it intact. I did, however,
make some changes to the unslotted
transmit and unslotted receive rou-
tines you see in Listing 1.

Listing 1—Continued.

{
for(j=0;j<20;j++)
i = data_buffer[j];

}
P3 = data_buffer[10];

}
}

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 53

The cmdUnslottedTX function
code in Listing 1 is rather obvious as to
what was done considering you and I set
forth the addressing scheme and selected
the operating channel beforehand. Most
every IEEE 802.15.4 and ZigBee imple-
mentation uses the 16-bit addressing
modes rather than the IEEE 64-bit
addressing modes. The less stuff you’re
sending, the more power you’re saving.

In the IEEE 802.15.4 specification,
the PHY is defined with integral data
(PD-SAP) and management (PLME-
SAP) service access points (SAPs),
which are logical portals that pass
primitives between the PHY and MAC
sublayers. Primitives are simply data
structures that contain information that
can be used and built upon by the neigh-
bor sublayer the primitive is passed to.

The plme portion of the
plmeSetRequest function stands for
PHY layer management entity. The
PLME, as it is called in the IEEE
802.15.4 spec, is responsible for coor-
dinating any management functions
associated with the PHY. In this case,
setting the current operating channel is
a PHY management function. Because
the PHY’s PLME-SAP and PD-SAP are
the only SAPs that join the MAC and
PHY sublayers, the MAC will always
pass the final management or data prim-
itive to the PHY sublayer, and any data
the PHY needs to pass up the stack will
always flow through the MAC.

Photo 4—Here’s that IEEE 802.15.4 packet we’ve been going after. Compared to a typical 802.11b packet, this
packet is simple, short, and sweet.

2701012-eady.qxp 12/5/2006 11:37 AM Page 53

http://www.circuitcellar.com

ple return of a value, the BCS will jump
all over that. Listing 1’s coup de grace
is the final assembly of the packet
length followed by the packet payload
into the transmit FIFO just before the
packet is fired down the antenna trace.

Photo 4 shows what happened when
I kicked off the transmission code.
The packet length byte is picked off
by the PHY. Note that I coded only a
0x01 for the payload length. The
ZMD44102 and BCS took care of the
rest. I turned on the intra-PAN bit in
the frame control word, which effec-
tively eliminated 2 bytes (source PAN
identifier) from the addressing fields.
Everything in the addressing fields
matched the predetermined values,
and a single byte of data is sitting just
in front of the pair of CRC bytes.

The SNA knows that NWK infor-
mation should immediately follow the
addressing fields and tries its best to
make some sense of it. You know that
the data payload is in the NWK spot
and apparently so does the SNA as it
reported a malformed NWK payload.

The transmitter node works. So,
let’s go work on getting the receiving
node up and running.

CODING THE DESTINATION NODE
The receiver node code can be seen

in the lower portion of Listing 1
beginning with the cmdUnslottedRX
function. The Boolean variable

54 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

Almost all of the IEEE 802.15.4
packet building is done within the
zmdUnslottedTX function. The
frame control word is being assembled
in the correct order inside of the
zmdUnslottedTX function. The cor-
rect build order is done here for clarity
as the ZMD44102 has the ability to
build an IEEE 802.15.4 frame by com-
bining data from dedicated frame
function registers (the ZMD44102’s
frame control registers, sequence
number register, etc.) and frame data
stored in general-purpose registers.

The frame control word resides
inside of the MAC protocol data unit
(MPDU) header, which is identified by
MHR (MAC header) in the IEEE
802.15.4 specification. I added the
FT_INTRA_PAN bit to the low byte of
the Frame Control Header because
there will be no intra-PAN communica-
tions in our simple little IEEE 802.15.4
peer-to-peer network. I also specified
the macPIB.macShortAddress
value in the MAC PIB PAN informa-
tion base (PIB), which in the case of
the BCS is kept inside the
mlmeResetRequest function.

If you follow the IEEE 802.15.4 rule-
book, the logical location of the MAC
PIB is inside of the MAC layer man-
agement entity (MLME), which is part
of the MAC sublayer. As you study

the BCS source code, you will find
that some of the elegance associated
with the IEEE 802.15.4 specification
has been converted into logic that is
more efficient in the real world. For
instance, many official IEEE 802.15.4
request primitives by rule will cause
the generation of an official IEEE
802.15.4 confirm primitive that has to
be passed to complete the operation. If
an IEEE 802.15.4 confirm primitive
operation can be simulated with a sim-

Photo 6—We don’t have ACK smarts above the MAC layer to generate any messages. Thus, this acknowledge-
ment message was generated by the ZMD44102’s MAC.

Photo 5—I listed the hex bytes here just in case you have trouble reading the data_buffer array contents: 0x0A
0x61 0x88 0x07 0x50 0x50 0x44 0x44 0x53 0x53 0xAA. The first byte represents the packet length. The 0x07 is
the sequence number, which matches up with the acknowledgement sequence number in Photo 6.

2701012-eady.qxp 12/5/2006 11:37 AM Page 54

http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 55

Fred Eady (fred@edtp.com) has more
than 20 years of experience as a sys-
tems engineer. He has worked with
computers and communication sys-
tems large and small, simple and
complex. His forte is embedded-sys-
tems design and communications.

SOURCES
Sensor network analyzer
Daintree Networks
www.daintree.net

PK51 C Compiler
Keil
www.keil.com

C8051F120 Microcontroller
Silicon Laboratories, Inc.
www.silabs.com

ZMD Wireless sensor starter kit
ZMD America
www.zmd.de

auto_ack is indeed true because
things get turned over quickly to the
zmdUnslottedRX function. Thus, the
very first thing that is done to the
receive configuration is to turn on the
auto acknowledgement bit and allow
the link quality indication (LQI) word
to be stored behind the packet in the
ZMD44102’s receive FIFO. Then, the
ZMD44102’s transmit success inter-
rupt trigger is disabled.

The receiver gets activated and as
soon as some valid data (good packet
CRC) gets through to the receive FIFO.
Control is returned to the
cmdUnslottedRX function. The 5-ms
wait is there to allow time for the link
to turn around and the receiver MAC to
post and transmit an acknowledgement
message. I allowed 5 ms here, but it real-
ly only takes about 3 ms for this to hap-
pen. The zmdGetRxPacket function has
already transferred the data from the
receive FIFO to the data_buffer array. So,
all I have to do is parse through the
data_buffer array and do as I please. I
know that the actual data payload is at
offset 0x0A as there is a packet length

byte at offset 0x00 of the data_buffer
array. Just to make something physical
happen, I dump the payload data byte
into the receiving ZMD44102 starter
board’s LED I/O port. You can see the
contents of the data_buffer array after
the reception of a packet from our trans-
mitting node in Photo 5.

Take a look at the Sequence Number
in Photo 6. It matches up with the
sequence number in Photo 5. I twisted all
of the necessary buttons and knobs (the
acknowledge request bit set in the frame
control word and the AutoAckEnable
bit set in the receive configuration) to
allow the ZMD44102’s MAC to gener-
ate the 5-byte acknowledge message.

HIT THAT EASY BUTTON
I’ve just shown you that you don’t

really need a ZigBee stack to get small
messages from point A to point B. The
ZMD wireless sensor starter kit bun-
dle is an excellent way to get your feet
wet if you want to dive into the
ZigBee pool. And, you may find that
ZigBee may be overkill for your
WPAN application. No matter which

way you decide to go, the ZMD wireless
sensor starter kit bundle takes the com-
plication out of IEEE 802.15.4. It won’t
take you long to see that IEEE 802.15.4
isn’t complicated. It’s embedded. I

“I NEED TO STAY AHEAD
JUST TO KEEP UP”

Suppliers, services, OEMs, new products and technologies, new contacts and old friends. IPC
Printed Circuits Expo®, APEX® and the Designers Summit bring together all segments of the
industry with a full program of technical sessions, courses and standards development along
with plentiful networking opportunities on and off the show floor.

Saturday – Thursday FEBRUARY 17 – 22, 2007
Los Angeles Convention Center

FOR MORE INFORMATION
contact 877-472-4724 (U.S./Canada) or shows@ipc.org

www.GoIPCShows.org

®

®

and the DESIGNERS SUMMIT

Scott McCurdy is the manager of design and business development for Jardon
Engineering, a PCB design layout service bureau. Scott needs to stay ahead of
technology changes in the industry just to keep up with his customers. He notes “the
PC board industry is constantly evolving as packaging density and complexity gets more
challenging every year. I depend on my visits to the shows and Designers Day to explore new
technologies and tools to help my PCB designers do a better job for our end customers. If we
don’t participate in these types of events, we are doomed to fall behind in technology.”

Scott McCurdy
Manager of Design and Business Development
Jardon Engineering, Inc.

It’s MY Show!

2701012-eady.qxp 12/5/2006 11:37 AM Page 55

mailto:fred@edtp.com
http://www.daintree.net
http://www.keil.com
http://www.silabs.com
http://www.zmd.de
mailto:shows@ipc.org
http://www.GoIPCShows.org
http://www.circuitcellar.com

formed in 1998 to take this idea to the
next level. The group started with an
initial grant from the British govern-
ment and investments from big busi-
ness. Since then, the group has
remained at the forefront of this new
self-sufficient electronics industry.
Refer to the Freeplay Foundation side-
bar for more information.

SELF-GENERATED POWER
Today, Freeplay has numerous prod-

ucts in three areas of interest: radio,
illumination, and energy production.
The original products involved the
winding of a steel spring, which in
turn would unwind and drive a DC
generator. Today’s products work by

cranking an alternator. The
alternator creates approximate-
ly 6 V of three-phase AC. This
output supplies the charging of
the three NiMH batteries.

I recently measured the cur-
rent requirements and charging
currents available to the
Freeplay Ranger AM/FM radio
(see Photo 1). Normal listening
at a hefty audio level requires
approximately 30 mA (4.8 V,
three AAA cells). Based on an
operating current of 30 mA at
4.2 V, the Ranger radio uses
126 mW. A good AAA NiMH
cell will discharge in about 12 h
at a rate of 30 mA. The solar
cell on top of the Ranger is
capable of supplying 30 mA on
a clear day (if it’s oriented cor-
rectly). The alternator is capa-

undeveloped countries don’t have
local convenience stores; nor can
many of those living in such places
afford a luxury such as batteries.

How can we help these nations
develop without creating additional
consumers of the Earth’s precious and
limited oil supplies? This is an oppor-
tunity for us to begin teaching the
world’s future users about renewable
energy.

British inventor Trevor Baylis was
the first to take the windup mecha-
nism mainly used in the clockwork
and toy industries and apply it as an
alternative power generator for a tran-
sistor radio. Realizing the potential,
the Freeplay Energy Group was

56 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

Radio has been with us for many
years now. You’ve seen the move
from AM to FM to satellite. Music
might be the most widely broadcast
content, but talk shows and news are
easy to find anywhere on the dial.
Although you might think of AM and
FM as local, stations like the British
Broadcasting Company (BBC), Voice
of America (VOA), and National Pub-
lic Radio (NPR) are listened to around
the world.

As a teenager, I carried around a
transistor (radio that is) so I could lis-
ten to the local AM rock and roll sta-
tions. Two local stations—WDRC and
WPOP—had a fierce competition for
listeners. Today, WPOP is gone and
WDRC is a talk radio station,
although WDRC FM competes
in the mainstream music
wave. Each night, I’d fall asleep
as I listened to tunes via a sin-
gle earpiece. (AM is monaural.)
And so began my dependence
on Eveready batters. At the
time, much of the money I
earned by returning bottles and
doing odd jobs went to buying
either batteries or plastic mod-
els in support of my habits.

Radio broadcasts have the
potential of spreading educa-
tional information to underde-
veloped countries, so the radio
can serve as a lifeline for those
in need. However, most coun-
tries don’t have the distribu-
tion networks that many of
you take for granted. Most

Green Energy

FROM THE BENCH by Jeff Bachiochi

What better time than now to get serious about the ways we approach our power and ener-
gy consumption needs? Jeff takes a look at “green” technology and describes a few alterna-
tive power sources.

Photo 1—Freeplay’s Ranger radio has multiple charging sources. Its AAA
NiMH batteries can be charged from the AC adapter, the internal alternator’s
cranking handle, or an internal solar cell. The operating time is about 5 to 50
times the cranking time (depending on crank RPM and playback volume).

2712002-bachiochi.qxp 12/5/2006 1:28 PM Page 56

http://www.circuitcellar.com

ble of producing a pretty hefty current.
Some minimum effort must be main-
tained to sustain sufficient output cur-
rent. An indicator will illuminate
when adequate output is produced.

I measured approximately 100 mA
of charging current at this minimum
indication. By cranking harder, I was
able to produce up to 2 A of charging
current. Of course, you must apply
more effort to produce the higher
current.

The actual charging rate depends on
the amount of continuous energy that
you can maintain. AAA NiMH bat-
teries have a size C of approximately
600 mAHr. It is recommended that a
NiMH cell be rapid charged at no
more than 1 C. Specifications suggest
that 40 min. of cranking would charge
the batteries in 40 min. This may
severely overtax the cells. (When rap-
idly charging NiMH batteries, it’s sug-
gested that you monitor their temper-
ature so you can to prevent overheat-
ing and electrolyte leakage.)

BTU, HORSEPOWER, & kW
The British thermal unit (BTU) is

widely used in the United States in
discussions about heating and cooling.
It is defined as the amount of heat
(energy) required to raise the tempera-
ture of 1 lb. of water by 1°F. There are
a few ways to look at the energy of 1

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 57

BTU. For instance, 1 BTU is equal to
0.00039 hp and 0.00029 kWh. These
same units of energy can be com-
pared as consumables when refer-
enced to 1 h.

Consumers who pay for electricity
are familiar with kilowatts and kilo-
watt hours. My last bill showed I
used 1,054 kWh of electricity during
a 30-day month. I used an average of
35 kWh per day (1,054 kWh per 30
days), or 1.5 kW per hour. At that
rate, the power company charged (for
generation) me approximately $0.10
per kWh. (Note that the delivery
charge for this energy was approxi-
mately $0.06/kWh.) My last fuel oil
delivery was $2.39 per gallon.

Fuel oil is about 151,000 BTU per
gallon. That gallon of fuel oil converts
to 44 kWh (151,000 × 0.00029). At
$0.10 per kWh, $2.39-per-gallon oil is
worth $4.40 (44 kWh × $0.10) to the
power company for electricity genera-
tion. Of course, it doesn’t pay $2.38
for a gallon of oil and conversion effi-
ciency isn’t 100%, but it does serve as
sanity check.

The price of gasoline happens to be
down as I write this column.
Although it was higher than $3 for
most of the summer, I payed $2.80
for a gallon last week. The price of a
gallon of gas is important to drivers,
but it really boils down to miles per

gallon (as all of the owners of large
SUVs know). The last fill-up for my
van was 17.5 gallons. If I drive 370
miles, that’s 21 MPG (370 miles per
17.5 gallons). At $2.80 per gallon,
that’s about $0.13 per mile ($2.80 per
21 MPG).

If a gallon of gasoline is equal to
125,000 BTUs, then it’s 36 kWh
(125,000 BTU × 0.00029 kWh/BTU).
However, the efficiency of gasoline
engines is only about 30%. So, we end
up with about one-third of the avail-
able energy, or 12 kWh. Using this
value, the cost is $0.24 per kilowatt-
hour ($2.80 per 12 kWh).

Better yet, my van requires an ener-
gy value of 571 watts-hours per mile
(WhPM). Note that 12 kWh per 21
miles is 571 watt-hours per mile.
Using the watt-hours per mile meas-
urement (or even MPkWh) makes it
easier to compare gasoline vehicles to
electric vehicle alternatives or energy
usage in general.

EFFICIENCY
Talking about energy conversion is

all well and good, but so much
depends on the efficiency of energy
conversion. A 30% conversion effi-
ciency for gasoline vehicles is pretty
darn awful. Thankfully, you have
much higher efficiencies when deal-
ing with moving electrons. Some
charging systems can get better than
90% efficiency. Although linear sup-
plies can be designed to reduce losses
to a minimum, efficiencies are gener-
ally much lower than when using
digital techniques.

Photo 2—Freeplay’s LED flashlight enables you to keep its batteries charged with the standard internal alternator.
Illumination has a high and low setting for its seven white LEDs to help conserve batteries.

Photo 3—When shaken, an internal magnet slides
back and forth through the coil. The coil produces volt-
age pulses as the magnetic field cuts through the coil’s
winding. This voltage pumps up a supercapacitor,
which is the power source for a single LED.

2712002-bachiochi.qxp 12/5/2006 1:28 PM Page 57

http://www.circuitcellar.com

58 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

Let’s take a look at the alternator
used in most of Freeplay’s charging
systems. You must measure the ener-
gy input (manual labor) and energy
output (charging current) to get handle
on the kind of efficiencies that can be
expected.

The setup to record energy input is
a simple lazy Susan (a ball bearing
platform) mounted to a plywood base.
The item to be monitored is attached
so that the crank’s centerline coin-
cides with the centerline of the lazy
Susan. The free rotating top has an
arm attached to it. I used an
adjustable bookshelf bracket as the
arm because it has holes spaced 0.5″
and is labeled every 1″. This enables a
scale to be mounted at various points
on the arm. The scale measures the
force on the arm as the device being
tested is operated (e.g., when the han-
dle is cranked).

To measure energy output, the volt-
age and current are monitored at the
NiMH batteries as the alterna-
tor is cranked. There is an ini-
tial resistance to alternator
rotation where the magnetics
are aligned. After breaking this
fundamental bond, the crank-
ing force drops and remains
minimal, requiring about 35
inch-ounces before any current
is measured.

As you can see in Figure 1a,
the output current is fairly lin-
ear with the force applied to the
crank handle. The voltage
potential applied rises along
with the current output. Using
the graph, you can calculate the

energy being applied to the NiMH bat-
teries at various output levels. At a
force of 40 inch-ounces (or 0.2 ft-lbs),
the energy output is 150 mA × 4.4 V
or 660 mW. Also, at 40 inch-ounces of
force, I had to maintain about 80
RPMs on the crank (see Figure 1b).

By knowing the force exerted and
the crank’s RPMs, you can calculate
the power input:

and

Thus,

You can substitute:

The result is:

The input energy expended to pro-
duce a NiMH charging rate of 150 mA
(660 mW output energy) is 2.2 W. The
system’s efficiency is output energy

0 2 2
80

33 013
0 003

0 003 0 735 0

.
,

.

. . .

× × =

× =

π horsepower

or

00022 2 2 kW W.()

2 1 80π × ×Radius RPMs for linear distance

Horsepower =

0 2

33 013

.
minute

,
min

× linear distance

feet -lb
ute

or
0 2

33 013
.

,
 linear distance×

()Horsepower

 = torque
linear

feet -lbs

lb feet ×

minute

(/) ddistance
minute

Horsepower =
 33,013 ft-lb
utemin

per input energy. In this case, it’s
660/2,200, or 0.3 (30%).

CRANK IT UP
Although the alternator used in

Freeplay devices has a current output
that’s much greater than the optimum
charging current, it doesn’t seem to
have any limiting protection for the
NiMHs. It looks like a good cranker
could heat the rechargeables up to a
point at which they may be damaged.
I say “a good cranker” because crank-
ing for an extended period of time can
really fatigue those muscles in your
forearms. At 600 mA, it would require
about 1 h of continuous cranking to
totally charge the NiMHs back to a
fully charged state. That isn’t some-
thing I’d be interested in doing.

Another Freeplay product is the
Sherpa X-Ray LED flashlight (see
Photo 2). This product uses the same
alternator arrangement, but the stor-
age device is three AA batteries. AA
NiMH batteries have approximately
double the capacity of AAA cells. The
light source is seven white LEDs. The
power switch has two settings: high
and low. On the high setting, all of the
LEDs are driven with about 22 mA of
current (a total of 154 mA) with each
LED having a 12-Ω series resistor. On
the low setting, the potential across
the load (LED/resistor sets) drops down
by about a 1 V, thereby reducing each
LED’s current to about 5 mA (a total of
35 mA). Because the currents in the
flashlight are two to 10 times the
Ranger’s current, you can expect the
working life of a charge to be much

shorter than that of the radio
and take a good deal more
cranking to get fully recharged.

TOO GOOD
Usually, if it sounds too

good to be true, it probably
isn’t true. You may have seen
another type of “green” flash-
light on the market. The
“shake-to-charge” flashlight
uses the same principle as the
alternator except it uses a sin-
gle coil and a sliding magnet.
You throw the magnet through
the coil by shaking it. The cur-
rent produced from the mag-

Photo 5—On average, each American is responsible for 4 lb. of garbage
each day.

Photo 4—You can clearly see the difference between
the Freeplay flashlight’s illumination (left) versus the toy
shake-to-charge flashlight (right).

2712002-bachiochi.qxp 12/5/2006 1:28 PM Page 58

http://www.circuitcellar.com

Freeplay Foundation
As a natural extension of the group’s work, Freeplay

Energy founded the Freeplay Foundation in 1998. The
foundation was created to facilitate sustained access to
information and education for the poorest of the poor,
especially children, women, refugees, and the disabled.
Its purpose is to raise awareness of the role of radio
broadcasting and communication in developing coun-
tries, disaster areas, and regions of conflict. It also
researches opportunities where appropriate and alterna-
tive sources of energy can be applied to improve the
lives of people in developing communities, especially
children living on their own.

The foundation provides new, practical energy solu-
tions and is dedicated to ensuring sustained access to
information and education through radio broadcasts.

Its self-powered radios provide sustainable access
in several key areas.The foundation is commit-
ted to disseminating educational resources and help
(e.g., long-distance learning programs to increase liter-
acy and knowledge of the environment). It is also
committed to promoting useful healthcare-related
information (e.g., information about hygiene, immu-
nization, first aid, family planning, and disease pre-
vention and care). It provides assistance during emer-
gencies such as evacuation information.

The foundation is also committed to peacemaking. It
promotes conflict resolution, reconciliation, healing,
and cross-cultural understanding. Finally, it is dedicated
to providing information about topics ranging from
water conservation to farming techniques.

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 59

netic field passing
through the coil is
applied to a super capaci-
tor (0.33 F) instead of a
rechargeable battery (see
Photo 3). This device
places a single white LED
across the capacitor when
powered via the push but-
ton.

After an initial
charge/discharge cycle, I
shook the flashlight. The
LED output went from
good to wimpy in about 1
min. Calculating the
charge held in a 0.33-F
capacitor, I found that I
could expect the initial
measured current of 20 mA
to discharge the capacitor
from 5.5 to 2.5 V in about
30 s. This calculation (dt =
C × dv/I) might be correct
for a constant current;
however, the current drops along with
the potential, so the time is extended
to point where the light output is
unusable.

You won’t change a tire on a dark
road using one of these. Photo 4
shows a white background illuminat-
ed by the crank charge and the shake
charge flashlights in a dark room. I
placed a center divider between the
two to improve the contrast.

GO GREEN
The alternatives available for pow-

ering devices in emergency situa-
tions or in locations where no
sources of power exist are limited.
Don’t expect too much. Even good
designs can require a good deal of
physical energy to become worth-
while. This project really enabled me
to appreciate how much energy is in
a set of batteries (and how I take for
granted the convenience of purchas-
ing batteries at any store).

You can basically save energy in
two ways. You can improve the effi-
ciency of how you transfer energy

(e.g., recharging the state
of a device). You can also
improve the efficiency of
how the device uses the
energy. Such improve-
ments are happening
today. For instance, you
can replace incandescent
bulbs with energy-saving
fluorescent bulbs. You
can also use switching
supplies instead of linear
ones to raise the efficien-
cy of power conversion.

Freeplay Energy has a
jump on the rest of the
market. It may not be
using the most efficient
technology, but it’s being
used today to help our
world. “Green” is a term
that will not go away
anytime soon. How
much of the 210 million
tons of waste per year

has your name on it (see Photo 5)? I

150

100

50

250 500 750 1000

5.1

4.9

4.7

4.5

4.3

4.1

Inch-ounces

Milliamps

(Approximately 0.2′ per pound)

Volts

240

180

80

250 500 750 1000

RPM

Milliamps

120

Figure 1—Take a look at the effect on the alternator’s charging current used in the
Freeplay Ranger radio as the force on the cranking handle changes (a). Voltage and cur-
rent measurements are used to calculate output power. The bottom graph (b) shows the
same charging currents versus the cranking handle’s RPM. The force and RPM values are
used to calculate input power.

Jeff Bachiochi (pronounced BAH-key-
AH-key) has been writing for Circuit
Cellar since 1988. His background
includes product design and manu-
facturing. He may be reached at
jeff.bachiochi@circuitcellar.com.

SOURCES
Ranger AM/FM Radio
Freeplay Energy
www.freeplayenergy.com

a)

b)

2712002-bachiochi.qxp 12/5/2006 1:28 PM Page 59

mailto:jeff.bachiochi@circuitcellar.com
http://www.freeplayenergy.com
http://www.circuitcellar.com

60 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

they also never had the formal soft-
ware training (exposure) to feel com-
fortable with a high-level language.
Well, now’s your chance. I promise
this will be painless, right up until
when we start capturing user require-
ments. But isn’t that part of our real
job description anyway? I also think
that the student readership will get
some benefit out of these articles
because they will probably parallel some
class work in their embedded system
workshops.

I’m going to use several different eval-
uation systems. These systems will
range from very tiny 8-bit devices to full-
blown 32-bit powerhouses. I don’t want
to concentrate on any one system in par-
ticular. After I lay a foundation in what
to do, I’ll keep moving among these sys-
tems to show you what happens and
what is possible with each. That way
you can see the differences and feel com-
fortable selecting the best system for
your particular design situation.

One of the benefits of using C is to
divorce the code writing from the
underlying hardware. This lets you, as
designer, move among the processor
offerings more freely. Each microcon-
troller has its significant features, and
you should be able to identify what they
are and how valuable those features
would be in completing your design.

GET STARTED WITH C
In the early 1970s, Dennis Ritchie

developed C language for the Unix oper-
ating system. Since then, it has spread to
other operating systems, and today it’s
one of the most widely used languages.
Over the years, C has influenced the

“Hello World.” That’s traditionally
the first message you send out the sys-
tem output port when you bring up a
new C project. In keeping with my
Sesame Street days, I usually change
that first message to “Want Cookie.”
Since we all know that embedded sys-
tems are a bit out of the ordinary, I
want to make a statement that this
new system is special.

I’d like to present a series of articles
that will walk you through the process
of creating an embedded system, writing
the code in C, and bringing up that
design using one of several evaluation
boards available. I’ll be using low-cost
evaluation boards for 8-, 16-, and 32-bit
microprocessors. These evaluation
boards come with an integrated develop-
ment environment (IDE), editor, C com-
piler, assembler, linker, locator, down-
loader, and debugger. The typical price
for an evaluation board and tools is
$100 or less. Some of these tools are
limited in capabilities, but if you run
into that limitation then I’ve accom-
plished my task and you’ll be ready for
the next step. This won’t be a cookbook
approach to creating C projects, but I
hope instead to lay out a plan for you to
follow for any project simple or com-
plex.

I’ve noticed that several designers I
talk with don’t use C. These are expe-
rienced designers who turn out great
systems. When I ask why not C, the
main reason stated is that they just
never had the time in their busy
schedules to sit down and learn how it
all works. Also, many hardware engi-
neers understand the hardware, the
logic, and even assembly language, but

development of various other lan-
guages (e.g., C++). It is now the most
commonly used language for writing
software.[1]

C language is well documented, so I
won’t waste ink with a detailed language
lesson. We’ll pick up the language as
we design and build our systems.

Brian Kernighan and Dennis
Ritchie’s book, The C Programming
Language, is the first reference you
should review in order to familiarize
yourself with the language. This is not
perhaps the best book, but it’s certain-
ly a good reference and the one you
can use as a basis for our endeavor. I’ll
reference it as we explore the language.

As I was gathering information about
development systems, I was speaking
with Tim Shannon who is in technical
sales at NetBurner. He provided me
with a list of books that he said would
be helpful to individuals starting with
C. He especially recommended Greg
Perry’s Absolute Beginner’s Guide to C.
More about NetBurner in later articles.
Also, be sure to consider used books
about the C programming language.

EMBEDDED SYSTEM
First, let’s describe an embedded

system. It’s not a PC, but we’ll use a
PC to do most of the work. An embed-
ded system might be described as a
stand-alone computer with a power
supply, inputs, and outputs. Once it’s
powered up, an embedded system exe-
cutes its program continually. A cal-
culator is a good example of an
embedded system.

But another characteristic of our
embedded system is that it is of a real-

LESSONS FROM THE TRENCHES by George Martin

Hello World … Want Cookie
George is on a mission to walk you through the process of creating an embedded system,
writing code in C language, and then testing the design. In this article, he takes a fresh look
at C language and points you in the right direction.

2612013martin.qxp 12/5/2006 11:45 AM Page 60

http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 61

time nature. For this set of articles,
“real time” can mean blinking a light
at approximately a 1-s interval or
anticipating close of work on Fridays
and powering down unnecessary
equipment. It doesn’t have to be light-
ning fast. Just as I wouldn’t character-
ize a PC as an embedded system, I
would, however, put iPods, PlaySta-
tions, and Xbox systems in the embed-
ded category. Heck, even a PC, when it’s
running flight simulator, is an example
of a real-time embedded system.

So, let’s define a real-time embedded
system as: a CPU with an input (or
inputs), an output (or outputs), a power
supply, and some real-time require-
ments. The real-time requirement will
keep us on our toes and not get sloppy
with CPU resources and bloated code.

FIRST DESIGN
For our first design, let’s start with a

switch for input and an LED for output.
Our first design is one that turns the
LED on whenever the switch is pressed
and off when the switch is released.
There should be no humanly perceptible
delay between switch action and LED
operation. Simple enough, here goes.

In order to develop the system I’ve
just described, we would need to
install the development tools, create a
project in the environment, write the
code that represents our design, and
then compile, download, and test that
code. Let’s just skip to the fun part
and zero in on the code requirements.

Today’s tools are very sophisticated,
and we’ll get into how to set them up in
a later article. But for now, take my
word that the tools will have created a
project and in that project directory will
be a file called main.c. All C source code
files have the extension “c.” In main.c,
you will also find a procedure named
main, written as void main(void), or

something similar. main is the proce-
dure that starts the C code execution.
The CPU is started at power-up. Several
assembly language routines are executed
to configure the system and create the
environment needed for your C program
to execute. More about all of these later.

C OVERVIEW
A little about C so we can start to

implement our design. C is a compiled
language as opposed to BASIC, which is
an interpreted language. A compiled lan-
guage takes source files and then com-
piles, assembles, links, and locates them
to produce an object file. This object file
is loaded for execution or debugging. So,
we will be continually editing, compil-
ing, and debugging our code as we go
through the development process.

C is a procedural language used to
write operating systems. It can pro-
duce code as efficient as assembly lan-
guage. As a requirement for that effi-
ciency, we need to inform the compil-
er all about what we are intending to
do. Let’s start with variables. C assigns
a type to each variable. An 8-bit vari-
able is a char. It can be used to hold
numeric values from –128 to 127
using two’s compliment notation.
Another variable type is unsigned
char. And that can hold numeric val-
ues from 0 to 255. In assembly lan-
guage, we never distinguished between
these types, and thus we have to keep
track of what we were doing and be
responsible for the results. Pop quiz,
with unsigned subtraction, What do
the CPU’s carry and borrow flags rep-
resent? C takes care of this, and we’ll
see just how powerful this becomes as
we get more complex design issues.

The next larger type is a 16-bit enti-
ty, and let’s just say that’s an int. I’m
tentative here because the NetBurner
uses a CPU that is a 32-bit design. So

ints for that system will probably be 32
bits. Don’t worry. I’ll show you an easy
way out of this pickle. Along with ints,
we have unsigned ints. Just as ints
would let you represent –32768 to
32767, unsigned ints let’s you repre-
sent numbers from 0 to 65536. There are
more types and we’ll get to them later.

Statements in C are separated by a
semicolon. You can place several
statements on a single line, but that
can become less clear. For now, keep
to one statement per line. So, int a;
saves space for the variable a. How
much space? Well, 16 bits worth. Just
as char b; reserves 8 bits for the vari-
able b. And the following code defines
a, b, and c, sets values into a and b,
and then adds them and places the
result into c (see Listing 1).

Just where are these variables stored?
In RAM—unless you tell the compiler
to place them elsewhere. The CPUs
we’re using and C rely heavily on the
stack. Each procedure uses space on
the stack for locally defined variables.
These variables are created when the
procedure is called and destroyed when
the procedure is terminated. You can
define a variable to be in RAM perma-
nently (static) and available to all pro-
cedures or in the procedure’s stack and
lost after a procedure is completed.

Take a look at Listing 2. Lines 1 and 2
define the 16-bit variables a and b. Stan-
dard C has comments in /*...*/. But here
is one place I suggest you deviate for the
standard. The // pair can be used to mark
the remainder of the line as comments.
I find this creates C code that is much
cleaner to read and understand. Every-
thing on the line including and following
the // mark is a comment. Line 3 is a
blank line for readability of the code. Line
4 is the start of a procedure. This proce-
dure takes the variables a and b, adds
them together, and saves that result in the
variable c. The variable c is defined on
line 5 and located on the stack for pro-
cedure1. Lines 5 through 8 are indented
for readability. The result of the addi-
tion is returned on line 8. Line 9 ends the
definition of the procedure. The curly
braces (lines 4 and 9) encapsulate the
procedure and are required. The int and
void on line 4 were not originally
required in C, but you better use them
or get an F in this class. It’s good to be

Listing 1—This is a simple example of C code (declaring variables and using them).

int a; (1)
int b; (2)
int c; (3)

(4)
a = 7; (5)
b = 3; (6)
c = a+b; (7)

2612013martin.qxp 12/5/2006 11:45 AM Page 61

http://www.circuitcellar.com

62 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

proactive and define everything. The
compiler can use all of the informa-
tion you can give it to help diagnose
your problems.
Procedure1 knows about the exis-

tence of variables a and b because
they were defined in the same code
module and defined before Proce-
dure1 was defined. This is referred to
as scope of the variable. If we had anoth-
er module and wanted to use the vari-
ables a and b, we would need to inform
that other module about their existence.

extern int a; (1)
extern int b; (2)

Extern is a C keyword that does just
that. Variables are not global. You as
the designer need to establish which
modules will have knowledge about
which variables. At first, this seems a
drag, but as your designs get more
complicated, you’ll be thankful.
Prodecure1 adds two numbers and

these numbers need to be in variables a
and b. What if you wanted to add just
any two variables? Look at procedure2:
(see Listing 3). Line 1 defines proce-
dure2 as a procedure that is passed two
int variables, sums them, and returns
the result as an int. Much cleaner and
more understandable. Notice we didn’t
use the intermediate variable c.

Now we could use this new proce-
dure2. Line 4 defines a variable repre-
senting the number of boys in the
class. Line 5 defines a variable repre-
senting the number of girls in the
class. And Line 6 defines a variable
representing the number of students
in the class. We next assign values
into the variables (lines 7 and 8) and
then call procedure2 (line 9). We
pass procedure2 the variables to be
summed and the procedure returns the
result. All of this compiles without
error because it’s all in the same mod-
ule, and line 9 knows about the proce-
dure because it was defined in line 1.

A word about variable names.
Uppercase and lowercase are accept-
able. I use capitalization to make vari-
able names easier to read. You can’t
start a variable or procedure with a digit.
I refrain from using special characters
such as $%^&. Some of these are per-
haps acceptable, but why take a chance?

And you should check the specifications
of your compiler just to see how com-
patible it is with the C language.

Now is also a good time to develop
some style with variable names. The
names used in the above example are
very readable and give an indication as
to what’s going on. Another style goes
something like this: IntNumberOf-
GirlsInClass. The type qualifier is
either added as a prefix or suffix. This
can be very useful in really large proj-
ects with many designers. One design-
er is responsible for creating the vari-
able and others know immediately all
about that variable.

A word of caution. It’s common usage
in C to use variables with all capital let-
ters as constants. Here is a simple define:

#define MY_FIRST_CONSTANT 3 (1)
int UseAConstant; (2)

UseAConstant = MY_FIRST_CONSTANT (3)

Line 1 defines a constant equal to
three. Line 2 defines a variable, and
line 3 sets that variable into the con-
stant. This is a great way to keep from
hard coding constants into your code.
The customer says I want you to blink
the LED three times for an error. I
would code the value 3 as a define so
that it’s not entangled in the code
because customers and designers
change their minds.

#define ERROR_BLINK_COUNT 10

It’s now visible and easily changed.

SYSTEM I/O
Let’s look at input and output for

our embedded system. On the type of
machines we are going to cover, CPU

Listing 4—This listing shows the use of the C #define statement and how to use it to define memory-mapped I/O.

#define PORT0_DIR 0x0190 // sets direction port0 (1)
#define PORT0_DATA 0x0192 // reads and sets port0 (2)
#define PORT1_DIR 0x0193 // sets direction port1 (3)
#define PORT1_DATA 0x0194 // reads and sets port1 (4)

Listing 3—A perhaps better version of Listing 2. This procedure takes two parameters, performs a simple addi-
tion operation, and returns the result.

int procedure2(int a, int b) { (1)
return(a+b); (2)

}; (3)

int NumberOfBoysInClass; (4)
int NumberOfGirlsInClass; (5)
int NumberOfStudents; (6)

NumberOfBoysInClass = 20; (7)
NumberOfGirlsInClass = 25; (8)

NumberOfStudents = procedure2(NumberOfBoysInClass,
NumberOfGirlsInClass); (9)

Listing 2—This is an example of a procedure that sums two variables and returns the result.

int a; // define a (1)
int b; // define b (2)

(3)
int procedure1(void) { (4)

int c; (5)
(6)

c = a+ b; // create the sum (7)
return(c); // pass is back to the caller (8)

}; (9)

2612013martin.qxp 12/5/2006 11:45 AM Page 62

http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 63

pins can typically be either inputs or
outputs. The exact usage is defined by
the setting of a bit in a pin direction
register. Input is performed by reading
the voltage level of the pin, while out-
put is performed by writing the output
bit either 1 or 0. Some popular proces-
sors such as the 80XXX family have a
dedicated I/O instruction. Setting those
aside for now, we’ll be dealing with
CPUs that have memory-mapped I/O.

The first thing we need to define is
the address of the port direction register
(see Listing 4). These are hypothetical
values and not meant to be any particu-
lar CPU. The 0x0190 is hexadecimal
notation (0x0190 = 400 decimal). Let’s

say that we need to set the direction bit
to a 1 for output and a 0 for input. (Your
actual processor may vary.) Let’s also say
that the data register is positive true
logic, and that the hardware designers
put the switch input on bit 0 of Port0
and the LED output on port1 bit 1.

This is a good place for a pointer. I’ll
talk about pointers in more detail in a
later installment. This is another C
type. It is used to store a value used to
reference memory. In memory loca-
tion 100, I want to store the int 7 (see
Listing 5). That’s pointers and how
they work. We’ll expand on pointers
in later articles. Pointers are great
tools for speeding up code execution.

Listing 6—Using the memory-mapped I/O definitions in Listing 4, this listing shows a procedure that sets up the CPU
pins as inputs and outputs. It then reads the input and based on the result performs different output operations.

Void OperateLED(void) { (1)
Char *p; // define a pointer to an 8 bit entity (2)
p = P0_DIR; // Set the pointer the memory (3)

// loc of the Port0 control register (4)
*p = 0x00; // set the direction as input (5)
p = P1_DIR; // Set the pointer the memory (6)

// loc of the Port1 control register (7)
*p = 0x02; // set the direction as input (8)
p = P0_DATA; // Now Set the pointer to memory (9)

// location for the data register (10)
(11)

if (*p & 0x01) { // Read and test the input (12)
p = P1_DATA; // Now Set the pointer to memory (13)

// location for the data register (14)
*p = 0x02; // If true set the output (15)

} (16)
else { (17)

p = P1_DATA; // Now Set the pointer to memory (18)
// location for the data register (19)

*p = 0x00; // Reset the output (20)
} (21)
}; // end of Void OperateLED(void) { (22)

(22)
void main (void) { (24)
for(;;) { (25)

OperateLED(); (26)
} (27)
} // end of void main (void) { (28)

(29)

Listing 5—This code fragment declares a variable as a pointer to an int, sets its value, and then uses that
pointer to store a value.

int *x; // defines x as a pointer to an int (1)
x = 100; // Stores the value 100 into x (2)
*x = 7; // Stores the value 7 into the (3)

// memory location contained in x (100) (4)

phone: 978-874-0299
www.segger.com

emWin®
(GUI)

embOS ®
(RTOS)

emFile (File system)

+ + + N O R O YA LT I E S + + +

Preemptive multitasking
Zero interrupt latency
Easy to use start project included
Profiling support included
Object/source code available

ANSI "C" source code
MS-DOS/MS-Windows compatible
FAT12, FAT16 and FAT32 support
Multiple media support
Non FAT file system available

ANSI "C" source code, no C++ required
Supports b/w, grayscale and color
2D graphic library included
Variety of fonts included
PC simulation included
Window Manager/Widgets (opt)

For ARM Chips:
JTAG debug solution

with flash programming

+++ 8/16/32 bits +++

+++ 8/16/32 bits +++

+++ 8/16/32 bits +++

embeddedsoftware

solutions
Eval versions

available

2612013martin.qxp 12/5/2006 11:45 AM Page 63

http://www.segger.com
http://www.circuitcellar.com

64 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

(XOR) in your language references.
So, line 12 reads as follows. If the

Port0 input pin bit 0 is a one (true), then
execute lines 13 through 15. If it’s a zero
(false), then execute lines 18 through 20.

THE REAL WORLD
Now for some real-world issues.

What if the operation were inverted?
That is, what if the LED was on when
the switch wasn’t pressed? What
would you change? What if the hard-
ware engineers really put the switch
input on bit 1 of Port0 and the LED
output on bit 0 of Port1. Oops, they’re
very sorry and all went home for the
weekend!!! What if this code was too
slow? How could you speed it up?

I’ll be happy to discuss any questions
on the Circuit Cellar bulletin board
(http://bbs.circuitcellar.com/phpBB2/). I

Refer to Listing 6 for a complete
design to meet the design require-
ments. This should compile, link, locate,
and be ready to debug. Lines 1 through
22 define the OperateLED procedure.
Lines 24 through 28 define the main pro-
cedure. Line 25 is a new C keyword. The
for keyword is used to define a looping
operation. Look up the definition of a for
loop for the exact details, but take my
word: this for(;;) will loop forever.

Look at line 12. It reads if (*p &
0x01) {, which is the construct for an
if-then-else statement. If the condition
on line 12 is true, statements 13 through
15 will be executed. If the condition is
false, then the statements 18 through 20
will be executed. I always include the {}
braces. The C language will let you leave
them out if there is only one statement
to execute, but saving those keystrokes
will cause you grief. Don’t do it.

Exactly what is true and false
should be your next question. False is
defined as zero. True is defined and
not false or nonzero. The & operator is
the bitwise logical AND operation.
Look up & (AND), | (OR), ~ (NOT), ^

REFERENCE
[1] Wikipedia, “What is C?” http://en.

wikipedia.org/wiki/C_programming
_language.

George Martin (gmartin@circuitcellar.
com) began his career in the aerospace
industry in 1969. After five years at a
real job, he set out on his own and co-
founded a design and manufacturing
firm (www.embedded-designer.com).

RESOURCES
M. Barr, Programming Embedded Sys-
tems in C and C++, O’Reilly, 1999.

B. Kernighan and D. Ritchie, The C
Programming Language, Prentice
Hall, 1988.

A. Koenig, C Traps and Pitfalls,
AT&T Bell Laboratories, 1989.

G. Perry, The Absolute Beginner’s
Guide to C, Sams Publications, 1994.

George’s designs typically include
servo-motion control, graphical input
and output, data acquisition, and
remote control systems. George is a
charter member of the Ciarcia Design
Works Team. He’s currently working
on a mobile communications system
that announces highway information.
George is a nationally ranked revolver
shooter.

Visit the Apec 2007 web site
for the latest information!

www.apec-conf.comwww.apec-conf.com

2007
February 25–March 1, 2007

Disneyland, Anaheim, CA

THE PREMIER

GLOBAL EVENT IN

POWER ELECTRONICSTM

THE PREMIER

GLOBAL EVENT IN

POWER ELECTRONICSTM

SPONSORED BY

2612013martin.qxp 12/5/2006 11:45 AM Page 64

http://bbs.circuitcellar.com/phpBB2
http://en.wikipedia.org/wiki/C_programming_language
mailto:gmartin@circuitcellar.com
mailto:gmartin@circuitcellar.com
http://www.embedded-designer.com
http://www.circuitcellar.com
http://www.apec-conf.com
http://www.jkmicro.com

65.qxp 12/4/2006 11:56 AM Page 1

http://www.usbee.com

Mixed Signal Oscilloscope
Capture and display up to 4 analog and 8 logic

channels with sophisticated cross-triggers.

Digital Storage Oscilloscope
Up to 4 analog channels using industry standard

probes or POD connected analog inputs.

Spectrum Analyzer
Integrated real-time spectrum analyzer for each

analog channel with concurrent waveform display.

Logic Analyzer
8 logic, External Trigger and special purpose

inputs to capture digital signals down to 25nS.

Data Recorder
Record anything DSO can capture. Supports

live data replay and display export.

BitScope DSO is fast and intuitive multi-channel test and measurement software for your
PC or notebook. Whether it's a digital scope, spectrum analyzer, mixed signal scope,
logic analyzer, waveform generator or data recorder, BitScope DSO supports them all.

Capture deep buffer one-shots or display waveforms live just like an analog scope.
Comprehensive test instrument integration means you can view the same data in
different ways simultaneously at the click of a button.

DSO may even be used stand-alone to share data with colleagues, students or
customers. Waveforms may be exported as portable image files or live captures replayed
on other PCs as if a BitScope was locally connected.

BitScope DSO supports all current BitScope models, auto-configures when it connects
and can manage multiple BitScopes concurrently. No manual setup is normally required.
Data export is available for use with third party software tools and BitScope's networked
data acquisition capabilities are fully supported.

PC Oscilloscopes & Analyzers
DSO Test Instrument Software for BitScope Mixed Signal Oscilloscopes

�

�

�

�

�
Networking

Flexible network connectivity supporting

multi-scope operation, remote monitoring and

data acquisition.
�

Data Export
Export data with DSO using portable CSV files or

use libraries to build custom BitScope solutions.� www.bitscope.comwww.bitscope.com

BitScope DSO Software for Windows and Linux

4 Channel BitScope 2 Channel BitScope Pocket Analyzer

DSO
2.0

DSO
2.0

5.qxp 10/26/2006 11:22 AM Page 1

http://www.bitscope.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 67

grammer (or potentially right in the cir-
cuit where the memory was used). At
first, in-system programming required
some extra hardware to provide the typi-
cally higher erase and programming volt-
ages. But as the in-circuit programming
advantages for manufacturers became
more apparent, flash memory chips
came to run on the main supply voltage
and didn’t require special circuitry.

And just as flash memory chips
came to supplant factory-programmed
or UV ROMs, flash technology quick-
ly found a home in microcontrollers.
Previously, typical microcontrollers
had been factory-programmed, con-
nected to external ROM (squandering
most of their I/O pins!), or occasional-
ly manufactured with UV-erasable
EPROM sections. With flash memory,
a microcontroller needs no external
memory bus and can be reprogrammed
in-system (usually with very inexpen-
sive tools), so it’s no wonder that this
is such a widely used technology.
There is a wide array of flash memory-
based microcontroller choices avail-
able for manufacturers and hobbyists
alike because it’s such a good technol-
ogy for storing embedded code.

But storing embedded code isn’t the
only thing flash memory is good for.
Many (although not all) flash memory
solutions enable the embedded system
to do its own flash memory program-
ming on the fly. If you have a system
with that ability, then there are several
useful things you can do with it. You
can use the flash memory to store non-
volatile configuration data. You can use
the flash memory for data logging. And
you can create a system that’s capable
of updating its firmware in the field.

Flash memory has become a perva-
sive element of embedded systems
everywhere, so it’s a safe bet that you
are accustomed to using flash memory
for storing code. But that’s certainly
not the only thing you can do with
flash memory. In this article, I’ll cover
several other useful things embedded
designs can do with flash memory.
Get ready to add some useful new
techniques to your toolbox.

FLASH EVERYWHERE
Ah, the good old days before flash

memory when read-only memory
(ROM) was manufactured with your
code in it—if, of course, you happened
to have lots of money to spend on a
custom chip manufacturing run. Your
alternative was the programmable
read-only memory (PROM), which
came in two flavors: one-time pro-
grammable or UV erasable. Because
every mistake was costly with pro-
gram-once PROM, the popular choice
was UV erasable. This was my introduc-
tion to the embedded project world. I
remember programming 2732 EPROMs
on weekends, hand-keying hex bytes
into a suitcase-sized PROM programmer
borrowed from a company with pockets
deep enough to actually own such a
thing, and always having a few spare
chips basking under an unshielded UV
lamp for the several hours it took to
erase the last round of programming.
That’s a piece of the “good old days”
that I certainly don’t miss!

Flash memory chips were a giant step
forward. The chip was erased electrically
(rather than optically) in minutes or sec-
onds instead of hours, and the entire
process could be done in the chip pro-

We’ll look at each of these abilities.

FLASH BASICS
A ROM chip typically looks like

most of a static RAM chip. There’s an
address bus to specify the byte to read,
a data bus to read it, a READ signal
that says when to do this, and usually
chip select signals to distinguish
among multiple chips. A flash memo-
ry chip typically adds a WRITE signal,
but it’s not the same as the WRITE
signal on a static RAM. In a static
RAM chip, a write cycle updates the
specified address with the specified
data. In a flash memory chip, things are
more complicated. A write to a flash
memory chip is like access to some
complex memory-mapped I/O device.

That’s because flash memory is not
randomly writable. First of all, chang-
ing a bit in flash memory requires
more power and substantially more
time than a read cycle. Secondly, bit
programming is a one-way trip: you
can choose to change a bit from its
“erased” state (almost always one) to a
programmed state (zero), but you can’t
go the other way. The best you can do
is an erase, which takes longer still
and clears out an entire block of mem-
ory called a sector, not just a selected
bit or byte. And while we’re listing
the limitations of flash memory, there’s
one more to consider: there is a finite
number of times you can change a bit
before it is worn out and stops working.

So, when you program a flash ROM
or a flash memory-based MCU, your
programming tool is erasing the chip
(or at least the necessary sectors), and
then, byte-by-byte, programming bits
as needed. Even a limited-reuse flash

FEATURE ARTICLE by Mark Bereit

The Power of Flash

You use flash memory to store code, but did you know that there are other uses for it? Mark
describes several other ways to use flash memory in your embedded designs.

Flash Memory Techniques for Your Toolbox

2701016bereit.qxp 12/5/2006 1:39 PM Page 67

http://www.circuitcellar.com

68 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

memory part typically supports a min-
imum of a thousand reprogramming
cycles (many support a million cycles),
so you don’t usually have to think
about the number of programming
cycles except for very well used parts
(which may start showing noticeably
slower erase times as a warning).

The process of erasing a sector of flash
memory or programming a byte is
accomplished by writing commands to
the flash memory part. There is general-
ly a set of write operations you perform
to “unlock” the flash memory before it
will accept any erase or programming
commands. (This is a very good thing for
in-system flash memory: you don’t want
a bug or a power glitch accidentally
changing your code!) Then there is a
command you send to begin an erase
sequence, a different command you send
to begin a program sequence, and some
way to poll the device to know when
your sequence has been completed.

The details vary widely between
parts: the unlock sequence, which
commands do what, what timings
should be used, how to determine
when an operation is finished, and so
forth. Most flash memory parts have
additional features, like the ability to
“lock” sectors against reprogramming.
For flash ROMs designed to the same
or similar pin layouts, there is typical-
ly some agreement between vendors
on how you can query the part to deter-
mine how you perform further opera-
tions. But in any case, if you are going to
try to program flash memory from with-
in your code, you need to read the com-
ponent’s datasheet for the details.

Don’t forget that some microcon-
trollers with flash memory do not
have the ability to reprogram the flash
memory from within their code. For
example, I’ve worked with an older
8051 derivative, the Atmel AT89S53,

which had 12 KB of flash memory but
could be programmed only from out-
side while the chip is in reset. The
techniques in this article cannot be
used with such a processor. But then
this article may suggest to you why
you might want to select a micro-
processor that can do these things.
Refer to the NOR and NAND Flash
sidebar for more information.

PROGRAMMING FLASH
To program flash memory from

code, you need a routine for each of the
two essential operations: erasing a sec-
tor and programming a byte. The flash
memory manufacturer’s documentation
will tell you the various commands and
typically provide you with a flowchart
of how these are accomplished. Read
these carefully. Don’t expect to find
much in the way of code samples,
though! The specifics of your code
depend on the hardware you’re using.

One complication in the code is that
many flash memory parts specify certain
timings, such as how much time must
elapse between chip setup and program-
ming, how long you should wait after a
program command before you start
polling for completion, or how long you
should poll before determining that an
error has occurred. As with any embed-
ded code that needs to conform to timing
specifications, the correct code depends
on your processor and its clock speed.

A bigger and less obvious complica-
tion is that when you are program-
ming a flash memory part, it’s func-
tioning as an I/O device instead of as a
random-access memory. But if the
flash memory you are programming is
also your main code storage memory,
as is usually the case, then you have a
problem: while you’re programming the
flash memory, the processor won’t be
able to read code from it! So, the code to

erase or program the flash memory has
to run from some other memory. Some
systems or microcontrollers have more
than one flash memory block, so you
can run from one while programming
the other. More often, you have to run
your flash memory code from RAM.
And if your interrupt handlers are in
the flash memory being programmed,
those have to be turned off too
because the interrupt code can’t work.

CODE EXAMPLES
Let’s look at some sample code for

programming flash memory. My first
example is for programming the Span-
sion Am29LV040 flash memory device
(originally from Advanced Micro
Devices). These flash memory chips
offer 512 KB arranged in eight uniform
sectors of 64 KB. They provide a
straightforward programming model
with no special timing issues. Table 1
shows some of the command definitions
used by the flash memory chips. Figure 1
shows a flowchart for polling for the
result of a program or erase operation.
Both are taken from the chip’s datasheet.

Listing 1 shows the C code for the
program and erase operations. For sim-
plicity, this code is from a 32-bit micro-
processor environment (a Freescale
Semiconductor ColdFire system),
where the flash memory chip being
programmed isn’t used for main pro-
gram code. The two routines are simi-
lar. Interrupts are disabled, and the
command bytes described in Table 1
are written to the flash memory chip.
Then the polling begins. While pro-
gramming or erasing, bit 7 of the read
back will show the opposite of what
you are programming. When the erase
or program has succeeded, bit 7 of the
data will read back what we’re looking
for. Separately, bit 5 will show a zero
while the chip is working. But if the

NOR and NAND Flash
In this article, I describe the flash memory technology

most often used in microcontrollers and discrete memory
chips: NOR flash memory. But there is another type of
flash memory. The newer NAND flash memory doesn’t
function as a system memory technology; it functions as
a mass storage I/O device.

NAND flash memory erasing and programming is typical-
ly faster than NOR flash memory and tends to support more

rewrite cycles. But like a disk drive, it may include some
“bad sectors” that have to be managed. This technology is
used in flash memory sticks and portable media players,
where sequential access to large data content is more impor-
tant than rapid random read access of individual bytes.

NOR flash memory is still the more common type of flash
memory used in microcontrollers because it allows direct exe-
cution of code. I focus on NOR flash memory in this article.

2701016bereit.qxp 12/5/2006 1:39 PM Page 68

http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 69

chip times out (the program or erase
fails), bit 5 is set to one, telling you of
a failure. So, the code is separately
watching for that bit to indicate that
the routine should not continue to
loop forever. (In this error condition,
you also have to put the chip back
into regular Read mode using the F0
reset command. With ordinary suc-
cess, the chip automatically switches
back to Read mode once it completes.)

My second example is from an older
embedded system using a Zilog Z180
microprocessor and either a 128-KB
Am29F010 or 512-KB Am29F040 chip
as the main code storage. These flash
memory chips use the same com-
mands and polling sequence as the
Am29LV040 in the first example.

In a Z180 system, the 64 KB of logi-
cal address space is mapped onto a 1-
MB physical memory space through
the Z180’s memory management unit.
In my example system, the flash
memory occupies the bottom 512 KB
of physical memory and the bottom
32 KB of logical memory. The top 16
KB of logical memory (C000H–FFFFH)
is set aside for banked memory and
remapped to various locations in flash
memory or RAM as needed. To erase
or program some of the flash memory,
the Z180 code would first map the
appropriate section of the flash memo-
ry into the banked memory space.

Listing 2 is the Z180 assembly lan-
guage code for the program and erase
operations. This is doing the same kinds
of work as we saw in Listing 1, but in
assembly language. Listing 3 shows a
snippet of C code for calling the program
routine. First, the real program code is
copied into RAM. The C code then calls

the RAM copy instead of the version in
ROM. The assembly code was written
with no absolute addresses so that it
could be copied without having to do
any special relocation.

The specifics of how you program
and erase flash memory vary between
systems. In any case, you need code for
these two basic functions. With these
in hand, you can start to put your flash
memory to additional use.

CONFIGURATION DATA
Embedded systems often need a provi-

sion for accepting some elements of data
that can be changed (infrequently) in the
field. This could be threshold or timing
constants, a password, or just a start-up
state choice. Because these choices are
not likely to undergo a large number of
changes over the life of the system,

flash memory is a reason-
able method for handling
the storage.

The quick and dirty solu-
tion is to dedicate a flash
memory sector to each con-
figuration item so that any
change represents an erase-
and-reprogram cycle. Of
course, if you have more
configuration choices than
available sectors, this won’t
work. The next obvious
approach is to store all of
the configuration items

together in a structure in a sector and
then erase and reprogram all the choices
when any one changes. However, beyond
causing more erase-and-program cycles
than are really necessary, this approach is
at risk if Murphy’s law should strike. All
of the settings will be lost if the system
were to lose power between the erase
and the completed reprogram.

A better approach for a system with
multiple configuration values is a tok-
enized storage system that relies on a
useful if not obvious fact of flash
memory: you can change a value with-
out erasing it, as long as the new value
you want differs from the old value
only by clearing additional bits (not
setting any cleared bits). For example,
you can always reprogram a byte with
01010101B to, say, 00010001B..., but
not to 01110111B.

My approach to storing configura-
tion data in flash memory involves
defining a numeric token for each pos-
sible configuration value in the range
41H through 7EH and setting aside two
sectors (or sets of sectors if it will take
more than one sector to hold all of the
choices) for the storage. One sector (or
set) holds the working configuration
values while the other is held in
reserve. Within the working configu-
ration sector, the first byte is an “in
use” flag with a value of 00H. After
that comes a list of configuration
items, each consisting of a token
value byte, a length byte, and the
number of bytes of value information
for the token. (If every choice has the
same size of information, you don’t
need the length byte.)

To retrieve the value associated
with a token, your code simply walks

Start

Write command sequence

Read DQ[0:7]

DQ7 = Data?

DQ5 = 1?

Read DQ[0:7]

DQ7 = Data?

Fail Pass

N

Y

Y

N

Figure 1—Take a look at the data-polling flowchart for
the Am29LV040 flash memory chip.

Command sequence Cycles

Bus cycles
First Second Third Fourth Fifth Sixth
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data

Read 1 RA RD

Reset 1 XXX F0

Program 4 555 AA 2AA 55 555 A0 PA PD

Chip erase 6 555 AA 2AA 55 555 80 555 AA 2AA 55 555 10

Sector erase 6 555 AA 2AA 55 555 80 555 AA 2AA 55 SA 30

Erase suspend 1 XXX B0

Erase resume 1 XXX 30

XXX = Don't care, RA = Read address, RD = Read data, PA = Program address, PD = Program data, SA = Sector address (any
address within sector)

Table 1—Check out these selected command definitions for the Am29LV040 flash memory chip.

2701016bereit.qxp 12/5/2006 1:39 PM Page 69

http://www.circuitcellar.com

70 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

through the active sector, starting
after the “in use” byte. It looks for the
desired token and skips over the
length for any token you don’t want. If
you reach a token of FFH, the token
you are looking for isn’t stored.

To set the value associated with a
token, your code similarly walks through
the active sector and checks tokens. If it
finds the token, it first replaces the token
with the same value (logical-ANDed
with 3FH) and then replaces it again with
a 00H token as a means of invalidating
the value. When the code reaches the FFH

byte, any old value has been removed
and you are at the correct position to
write the new value.

However, it is possible that writing
the new value might run off the end of
the sector because each “replacement”
of a value consumes more of the sec-
tor without ever freeing any of it. So,
if your new value doesn’t fit, it’s time
to condense. What you do is program a
pending value (say, 01H) into the first
byte of the free sector. Then do a copy
loop. For each token in the active sector
that is a valid value (41H through 7EH),
the data is copied to the pending sector,
while any invalid token in the active
sector is skipped. The result is that only
the good values are now stored in the
pending sector. After the copy is com-
plete, rewrite the first byte of the pend-
ing sector to 00H and then erase the
previous working sector. You are now
ready to write the configuration value
to the end of the newly active sector.

Writing the configuration value
starts by programming the token, logi-
cal-ORed with 80H, and then the
length and data. After this has been
completed, go back and reprogram the
token to the desired value.

If it seems like there are a few extra
reprogramming cycles in all of this,
you’re right. But they are there to pro-
tect against a power failure while any
portion of the programming or erasing
is still in progress. The device initial-
ization code needs to check for any
incomplete operations and clean up
accordingly. If the system fails while
copying from the active sector to the
pending sector, there will be a sector
at startup with the “pending” value in
the first byte: erase that sector. If the
system fails while adding a new value

to the end of the data, the chain of
values will end with an invalid token
greater than 80H. Do the copy of good
values to the alternate sector and stop as
soon as you reach the invalid token
(because you can’t necessarily trust the
length byte that follows it). If the system
happens to fail after creating a copy of
the active sector but before erasing the
other, then you have two sectors, both
marked active, and they should contain
the same data. Thus, simply erase one.

The logic behind the back-to-back

writes to invalidate a token is not obvi-
ous. But if you were simply to go from a
token value to 00 in one program cycle
and that program cycle were interrupted,
only some of the bits might read as fully
set to zero, in which case the token
could read not as an invalid token but
a wrong valid token. (C code for the con-
figuration data logic is posted on the
Circuit Cellar FTP site.)

DATA LOGGING
An embedded system will often

Listing 1—The C/C++ code is for programming and erasing the Am29LV040 flash memory chip.

bool ProgramBytes(volatile BYTE * pMem, BYTE * pData, int cbData)
{ int i;

volatile BYTE * pROM = (BYTE *)((int)pMem & 0xFFF80000);
BYTE n;
for (i=0; i<cbData; i++)
{ // Start the unlock sequence...

disable_interrupts();
*(pROM+0x555) = 0xAA;
*(pROM+0x2AA) = 0x55;
*(pROM+0x555) = 0xA0;
// Write the data to the ROM...
pMem[i] = pData[i];
enable_interrupts();
// Wait for verification...
while (1)
{ n = pMem[i];

if ((n & 0x80) == (pData[i] & 0x80))
break; // Good burn!

if (n & 0x20)
{ if (pMem[i] == pData[i])

break; // Good burn!
*pROM = 0xF0; // Reset
return false; // Program failed

}
}

}
return true; // All bytes successful!

}
bool EraseFlashSector(volatile BYTE * pMem)
{ volatile BYTE * pROM = (BYTE *)((int)pMem & 0xFFF80000);

BYTE n;
// Start the unlock sequence...
disable_interrupts();
*(pROM+0x555) = 0xAA;
*(pROM+0x2AA) = 0x55;
*(pROM+0x555) = 0x80;
// Command the sector erase...
*(pROM+0x555) = 0xAA;
*(pROM+0x2AA) = 0x55;
*pMem = 0x30;
enable_interrupts();
// Wait for verification...
while (1)
{ n = pMem[i];

if (n & 0x80)
return true; // Good erase!
if (n & 0x20)
{ if (pMem[i] == 0xFF)

return true; // Good erase!
*pROM = 0xF0; // Reset

return false; // Erase failed
}

}
}

2701016bereit.qxp 12/5/2006 1:39 PM Page 70

http://www.circuitcellar.com

Mouser and Mouser Electronics are registered trademarks of Mouser Electronics, Inc. Other products, logos, and company names mentioned herein, may be trademarks of their respective owners.

The NEWEST Semiconductors | Passives | Interconnects | Power | Electromechanical | Test, Tools & Supplies from Mouser Electronics

FlashDisk Module

Provides non-volatile, solid state data and program
storage for embedded applications. Operating
system, application software compatibility, and
portability is ensured by the module’s True IDE
interface. No moving parts allow for more
rugged and reliable performance than rotation
hard drives.

mouser.com/simpletech/a

ConnectCore™ 9C

Powerful ARM9-based core module
enables OEMs to design-in core processing
functionality and networking capabilities
with a single, high-performance solution.
Delivers complete embedded network connectivity; additional bandwidth
handles many sophisticated embedded applications.

mouser.com/digi/a

BL2600 Wolf™

Ethernet-enabled
single-board
computer features a
Rabbit 3000® microprocessor
at 44.2 MHz, 10/100Base-T Ethernet connectivity,
512K Flash and SRAM, 12 analog channels, and
5 serial ports. I/O can be connected via IDC
headers, friction-lock connectors, and mounting
holes.

mouser.com/zworld/a

MOD5272 32-bit
Processor Module

This module features
a web-based control
interface, full 32-bit
architecture, full suite of TCP/IP protocols,
and 10/100baseT RJ45 network interface. Adds
network capabilities without taking up valuable
design time.

mouser.com/netburner/a

4000
High-
Performance
Microprocessor

Low EMI microprocessor for embedded control,
communications, and Ethernet connectivity.
Glueless architecture, 10Base-T Ethernet,
C-friendly instruction set. Up to 60MHz, 8
independent DMA channels, supports 8 or
16-bit Flash and SRAM memories, 7 hardware
breakpoints, 40+ I/O lines.

mouser.com/rabbitsemi/a

 Reduced time to market is critical for new
product designs -- lost time means lost revenue.
That’s why engineers depend on Mouser to
deliver a broad selection of embedded products
fast!
 And because these components have a
solution designed in, engineers can utilize
these plug-and-play modules from test through
production - saving time and money.
 Experience Mouser’s time-to-market
advantage! Our vast selection of the NEWEST
products, NEWEST technologies, new catalog
every 90 days, no minimums, and same-day
shipping on most orders, gets you to market
faster. We make it easy to do business with
Mouser!

mouser.com (800) 346-6873

Embedded Products for
the Latest Technologies

The Newest Products
 For Your Newest Designs

Mouser_CircuitCellar_1-1.indd 1 11/20/06 8:30:19 AM

71.qxp 11/30/2006 10:05 AM Page 1

http://www.mouser.com/simpletech/a
http://www.mouser.com/digi/a
http://www.mouser.com/zworld/a
http://www.mouser.com/netburner/a
http://www.mouser.com/rabbitsemi/a
http://www.mouser.com

TS-5600 Shown with
optional flash modules,
A/D, RS-485 and
Merlin cellular modem

TS-7200
shown with
optional A/D converter,
Compact Flash and RS-485

PC/104 Single Board Computers

Most products stocked and available

for next day shippingEngineers on Tech Support

Design your solution with one of our engineers (480) 837-5200

Custom configurations and designs w/

excellent pricing and turn-around time

Over 20 years in business

Never discontinued a product

133 MHz 586

Low Price, Low Power, High Reliability

using Linux development tools

see our website for 33 MHz 386 configurations

options include:
onboard temperature sensor, A/D Converter 8 channel 12 bit, Extended Temperature,

Battery Backed Real Time Clock, USB Flash 256 M (with ARM Tool Chain), USB WiFi

SDRAM - up to 64MB

COM Ports - up to 4 ports

Fanless, no heat sink

Compact Flash adaptor

USB Ports (Except on TS-5300)

PCMCIA II adaptor

DIO Channels - up to 40

Ethernet Ports

Power as low as 800mA

options include:

RS-485 Half and Full Duplex, A/D Converter up to 8 Channels at

12 bits, DAC up to 2 Channels at 12 bits, Extended Temperature

Off-the-Shelf Solutions ready to design into

your project using DOS development tools

5 boards, over

2000 configurations

2 USB ports

10/100 Ethernet - up to 2

DIO lines - up to 55

Fanless, no heat sink

Flash - up to 128MB onboard

SDRAM - up to 128MB

Linux, Real Time extension, NetBSD

COM ports- up to 10

qty 100
99$

qty 1
129$

259$
qty 1

229$
qty 100

200 MHz ARM9
Power as low as 1/4 Watt

SD card

option

NEW!

Open Source Vision

Programmable FPGAs VGA video

72.qxp 10/26/2006 11:13 AM Page 1

Technologic
S Y S T E M S

Visit our TS-7200 powered website at

We use our stuff.

www.embeddedARM.com

Tiny WiFi Controller

boots Linux in 1.1 seconds

Rugged aluminum enclosure

measures 1.1” x 4.9” x 3.1”

802.11g WiFi

200 MHz ARM9

SD Flash Card socket

1 external USB port

119$

Intelligent Battery Back-up

see our website for more boards and option details

12 bit A/D, DAC
8 channel 12-bit A/D converter, optional 2 channel 12-bit DAC,

A/D jumpered for 0-2.5V, 0-10V or 0-20mA

64 Digital I/O
32 inputs, 32 outputs, 200 mA drive, optional 512 Kbyte or 1 MB

battery-backed SRAM, stack up to four boards, RoHS compliant

New Products and PC/104 Peripherals

Modems
33.6K baud, 56K baud, AT commands, caller ID, cellular using

GSM and CDMA technologies

Non-volatile Memory up to 2MB, 10 year lithium battery

Serial Ports up to 4 serial ports with optional RS-485, opto-isolated available

ZigBee Wireless

CAN Bus Controller
Philips SJA1000, opto-isolated, up to 1 megabit/sec

selectable termination resistor, Ocera Linux driver

qty 1
249$

Up to 128M SDRAM

Run your system for days

with no external power source

qty 1

Up to 128MB Flash

3 TTL serial ports

1 10/100 Ethernet

low power wireless, simple serial interface, range up to 1 mile

73.qxp 10/26/2006 11:15 AM Page 1

http://www.embeddedARM.com

What is wireless to you?
F IND IT AT

MARCH 27-29, 2007 ORLANDO, FL WWW.CTIA.ORG/CTIAWIRELESS
O R A N G E C O U N T Y C O N V E N T I O N C E N T E R

Stylish

CTIA WIRELESS 2007 is the world’s largest wireless marketplace, drawing tens of thousands of attendees, featuring

more than 1,000 exhibitors, 20% international participation from over 100 countries, and representing a $500 billion

global industry with 2.3 billion subscribers worldwide.

W I R E L E S S I S

74.qxp 11/30/2006 10:02 AM Page 1

http://www.ctia.org/ctiawireless

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 75

need some provision for recording data
in a manner that can survive power
cycles. Your hardware can include
some sort of battery-backed memory
or an external EEPROM part, but you
could simply use some flash memory
sectors for the same purpose.

The advantage to logging data in
flash memory is that no extra parts are
needed, and your system may already
have enough extra space in the flash
memory to fit your storage needs. There
are also some drawbacks. You need to
consider the number of program/erase
cycles you expect the system to experi-
ence. In addition, you need to make sure
that the time it takes to erase a sector
doesn’t violate any timing requirements
for interrupt servicing or polling.

In a typical flash memory data-log-
ging application, your code views the
flash memory space as a ring buffer (see
Figure 2). In this buffer, log samples can
never cross a sector boundary, at least
one sector is always empty, and the
first byte in each sector represents an
“in use” flag. (Ideally, your log samples
would be of uniform size and divide
evenly into the sector size. In addition,
they would start with some token identi-
fier that could never have the value FFH.)

At start-up, your code would search
the buffer space, sector by sector,
looking for the first sector that is
erased (starts with FFH), and then for
the next sector that is in use (starts
with any other byte value). The first
sector in the ring after an erased sec-
tion is the oldest record. The last sec-
tor before the erased section contains
the newest record. (If the code doesn’t
find a used sector, the log is empty.)

When adding a log entry, your code
looks for the next spot to write,
advancing if necessary to the next sec-
tor. However, if this advance moves
into the last empty sector, then the
sector containing the oldest data needs
to be erased. Once the erase is com-
plete, you can proceed with logging
into the previously empty sector.

Because the system can fail while
performing the erase of the oldest sec-
tor, the start-up code might want to
check to see if the next write to the
log requires moving into the free sec-
tor. If so, it’s possible that an erase
was underway got interrupted, so the

Listing 2—The Z180 assembly code is for programming and erasing the Am29F010 or Am29F040 flash mem-
ory chip.

PUBLIC BurnByteBegin
PUBLIC BurnByte
PUBLIC EraseFlashBegin
PUBLIC EraseFlash
PUBLIC WorkRAMbuff
DSEG

BurnByte
EraseFlash
WorkRAMbuff

DEFS 256
CSEG

; BurnByteBegin
; This is the memory image of the BurnByte function,which is copied
; into RAM to run without causing ROM bus cycles. Note that this
; code contains no absolute memory references, since it runs at a
; different address than it occupies in ROM!
; Assemly calling convention:
; DE = mem address
; C = data byte
; return A = 1 if good, 0 if bad
; C calling convention:
; bool BurnByte(char * pMem, char nData)
; Before calling, switch the appropriate ROM sector into the bank
; space. The pointer should be the offset into THAT space.
BurnByteBegin

Di
ld hl, 555h
ld (hl), 0AAh ; unlock step 1
ld hl, 2Aah
ld (hl), 55h ; unlock step 2
ld hl, 555h
ld (hl), 0A0h ; program command
ld a, c
ld (de), a ; write the byte

?burn1 in0 a, (WATCHDOG) ; keep alive
ld a, (de) ; get the byte back
ld b, a
xor c
and 128 ; does DQ7 show what we want?
jr z, ?burn2 ; yes: success
ld a, b
and 32 ; does DQ5 show timeout?
r z, ?burn1 ; no: continue

; at this point, we have a failure...
ld hl, 555h
ld (hl), 0F0h ; reset/read command
xor a
ei
ret ; return a failure

; success result...
?burn2 ld a, 1

ei
ret ; return success

; EraseFlashBegin
; This is the memory image of the EraseFlash function,
; which is copied into RAM to run without causing ROM
; bus cycles. Note that this code contains no absolute
; memory references, since it runs at a different
; address than it occupies in ROM!
; Assemly calling convention:
; return A = 1 if good, 0 if bad
; C calling convention:
; bool EraseFlash(void)
EraseFlashBegin

di
push bc
ld hl, 555h
ld (hl), 0AAh ; unlock step 1
ld hl, 2AAh
ld (hl), 55h ; ; unlock step 2
ld hl, 555h (Continued)

2701016bereit.qxp 12/5/2006 1:39 PM Page 75

http://www.circuitcellar.com

76 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

oldest sector should be considered
unreliable and simply erased.

FIRMWARE UPDATES
When your embedded system’s code

is contained in flash memory, you may
want to take advantage of the in-sys-
tem reprogramming to allow your system
code to be updated in the field. Many
manufacturers take advantage of this
ability to provide their customers with
feature updates after the sale. (OK, so
more often this is used to apply bug fixes
after the sale. Does this benefit the cus-
tomer or encourage the shipping of unfin-
ished code? That’s another topic.)

Of course, you don’t have to be a
manufacturer to value firmware
updates. If your embedded system is
located in some remote or hard-to access
location, the ability to update firmware
remotely can be valuable. Your one-time
design might be located in the next
county, at the bottom of a well, or out in
space—none of which lend themselves
to swapping a chip at need!

The trick to updating firmware isn’t
in the programming. I’ve already cov-
ered that. The two key questions to a
firmware update are: Where does the new
code come from, and how does the sys-
tem work when its firmware is removed?

The new firmware can get into the sys-
tem by a variety of means. For a con-
sumer application, there may be some
existing media interface to which an
update can be attached: a memory stick
interface, a USB port that can read a USB
stick, or some sort of disk drive. For less
accessible applications, there is often
some sort of communications between
the embedded device and a PC (e.g., wire-
less technology, a serial port, or Ethernet).

And then you get to the tricky part. In
order to reprogram the firmware, you
need to erase the old firmware. This
means that that there is a period of time
when your system doesn’t have its
firmware. Sure, you can execute the
reprogramming code from RAM, but
what happens if your system loses power
at this point? Unless you’ve designed
very carefully, what you have then is a
dead system. If you’re like me, you’ve
applied firmware updates to a PC BIOS
or to some embedded peripheral and
looked with alarm at the warning that
tells you not to interrupt the update or

turn off the power. And what, pray tell,
happens if the power goes out? In many
cases, shipping back to the manufactur-
er, that’s what, because your product has
lost its mind. And for your remotely
located embedded system, that’s just not
an acceptable answer. A well-designed
system has to start with the position
that there must never be a time when
the system is not recoverable.

One approach I’ve seen involves
having enough code flash memory to
store the firmware twice. That is, the
old firmware is present and running
while programming the new firmware
into a different set of flash memory sec-
tors. After the update has completed,
then and only then is the old firmware
erased. A little bit of start-up code has
the job of deciding which firmware copy
to trust in the event that both copies are
present (because the programming or
erase didn’t finish). Otherwise, code
runs from the trusted memory.

This approach is easiest when your
system copies code from flash memo-
ry into system RAM at start-up (or
when it has some memory mapping
system that can make two different
physical memory ranges occupy the
same logical memory space). Otherwise,
every firmware update has to have two
binary images, one for each memory
area. This approach also suffers if your

microprocessor has a lot of fixed memo-
ry addresses for interrupt vectors. Then
you have to have them all in some fixed
code (never erased) that reroutes these
events to the trusted firmware set.

A different approach—which I’ve
used many times—is to build a set of
“boot code” (that is never erased) that
ordinarily starts the main firmware
but stands in for it in the event that
the main firmware isn’t present. This
boot code contains enough capability
to communicate with the host PC (or
other means of accepting a new
update) and program it into place. If
the system restarts (incomplete), the
boot code is running to let the user
know the update didn’t work and it
should be performed again.

This boot code can be fairly complex.
In one family of systems I’ve worked on,
the mechanism for updates was over Eth-
ernet, so the boot code needed to include
a fully functional TCP/IP stack and a
multithreading operating system just to
make it possible to restart a botched
firmware upload. Don’t do anything this
complicated unless you are prepared to
thoroughly test the failure cases. This is,
after all, the code you can’t update later.

But either the dual code storage
approach or the smart boot code
approach gives you a margin of safety.
It also enables you to program the flash

Listing 2—Continued.

ld (hl), 80h ; erasure command
ld hl, 555h
ld (hl), 0AAh ; confirm step 1
ld hl, 2Aah
ld (hl), 55h ; confirm step 2
ld hl, 0C000h ; HL = pointer into bank area
ld (hl), 30h ; sector erase command

?erase1 in0 a, (WATCHDOG) ; keep alive
ld a, (hl)
ld b, a
and 128 ; does DQ7 show completion?
jr nz, ?erase2 ; yes: success
ld a, b
and 32 ; does DQ5 show timeout?
jr z, ?erase1 ; no: continue

; failure result...
ld hl, 555h
ld (hl), 0F0h ; reset/read command
xor a
pop bc
ei
ret ; return a failure

; success result...
?erase2 ld a, 1

pop bc
ei
ret ; return success

2701016bereit.qxp 12/5/2006 1:39 PM Page 76

http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 77

memory as the firmware downloads (i.e.,
transfer a sector, program it, and on to
the next one). The risky approach of just
running an erase-and-program routine
from RAM requires that the entire
firmware was first loaded into more
RAM, which means you have to have
enough memory to hold the new
firmware, the erase-and-program code,
and anything else needed to keep the sys-
tem afloat. Embedded systems often have
substantially more flash memory than
RAM, which leaves you no room for a
temporary copy of the firmware anyway.

The start-up or boot code must
address all the needs of your particular
microcontroller for a working system.
The reset code and any fixed interrupt
vectors must all go first to the perma-
nent code and only proceed to the main
code when it can be used. Recognize
that a system of fixed interrupt vectors
is necessarily going to be slower to
respond in such a system. (A much bet-
ter solution is to use a processor family
where the interrupt table is programma-
ble so there is no performance penalty.)

Something else to consider is that you
don’t want to program the firmware
incorrectly! You should have some val-
idation that your data is being pro-
grammed into the correct addresses with
no lost data, and with some checksum
or CRC validation that the firmware
data is trustworthy, both when transfer-
ring it into your system and when your

boot code is deciding whether to trust
the firmware it sees. I typically make
the first few bytes of my firmware image
a “signature value,” which the upload
code programs only after it has pro-
grammed everything else. If the boot
code doesn’t see the correct signature,
there’s no point in even testing the
remaining memory. The upload didn’t
complete, and you need to try it again.

If you are using a serial port for
transfers, you might send your
firmware data in either Motorola S-
Record format or Intel hex format.
Either of these is preferable to sending
simple binary data. Most embedded
tools can generate one of both of these
formats, and the address information
and checksums help you detect any
lost data. Better still is to develop your
own communications protocol, where
the system accepts a block of data, pro-
grams it, and only then gives the host
PC the go-ahead to send the next block.

Test the update code frequently. When
your system is still on a bench, deliber-

ately interrupt the process with loss of
communications and loss of power at
various points and make sure that you
can always recover. This is your insur-
ance policy against future changes to
your code. Be sure the insurance works.

FLASH POWER
Whether you are building code

insurance with in-system reprogramming
of your firmware, logging data, or storing
configuration data, there is a lot that you
can do with flash memory besides just
holding your latest code. Hopefully,
these examples will spark your imagina-
tion. How will your next project benefit
from the power of flash memory? I

Listing 3—The Z180 C code is for executing the assembly language program and erase routines from RAM.

extern BYTE WorkRAMbuff[256], EraseFlashBegin[1], BurnByteBegin[1];
bool BurnByte(BYTE * pAddr, BYTE nData);
bool EraseFlash(void);
// ProgramBytes
// Burns the passed data into a specific memory address. The
// address must already be visible in the banked memory window.
bool ProgramBytes(BYTE * pMem, BYTE * pData, int cbData)
{ memcpy(WorkRAMbuff, BurnByteBegin, sizeof(WorkRAMbuff));

while (cbData)
{ if (!BurnByte(pMem++, *pData++))

return false;
cbData—;

}
return true;

}

// EraseFlashSector
// Erases a sector of Flash back to FFs. The sector must already
// be visible in the banked memory window.
bool EraseFlashSector(void)
{ memcpy(WorkRAMbuff, EraseFlashBegin, sizeof(WorkRAMbuff));

return EraseFlash(void);
}

Empty sector

Log data

Newest entry Oldest entry

FillLog data

Figure 2—The flash memory is arranged as a ring
buffer for storing log entries. There is always one empty
sector following the sector receiving the newest entries.

RESOURCES
J. Makwana and D. Schroder, “A Non-
volatile Memory Overview,” 2004,
http://aplawrence.com/Makwana/
nonvolmem.html.

Spansion, “AM29F010B Data Sheet,”
22336, 2006, www.spansion.com/data
sheets/23479.pdf.

———, “AM29LV040B Data Sheet,”
21354, 2006, www.spansion.com/
datasheets/21354e4.pdf

———, “AM29F040B Data Sheet,”
21445, 2006.

J. Tyson, “How Flash Memory
Works,” http://electronics.howstuff
works.com/flash-memory.htm.

SOURCES

Am29LV040 Flash memory device
Spansion
www.spansion.com

Mark Bereit (www.markbereit.com) has
been developing software and designing
hardware since 1984. He spent six years
as the founder and head of a small busi-
ness offering contract hardware and
software development for other busi-
nesses. For the past eight years, Mark
has been the director of product devel-
opment for IRIS Technologies, a manu-
facturer of video technology products.

PROJECT FILES
To download code, go to ftp://ftp.circuit
cellar.com/pub/Circuit_Cellar/2007/198.

2701016bereit.qxp 12/5/2006 1:39 PM Page 77

http://www.markbereit.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2007/198
http://aplawrence.com/Makwana/nonvolmem.html
http://www.spansion.com/datasheets/23479.pdf
http://www.spansion.com/datasheets/21354e4.pdf
http://electronics.howstuffworks.com/flash-memory.htm
http://www.spansion.com
http://www.circuitcellar.com

78 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

demonstrated a 10-GB prototype.
Do the math comparing RAMAC

with the new Toshiba unit and you
can see that disk drive advances have
far outpaced those of their memory
chip brethren. The capacity (10 GB ver-
sus 5 MB) and transfer rate (12.5 Mbps
versus 10 Kbps) gains alone provide a
million-fold-plus gain. And while
today’s memory chip is about the
same size as the original, you could
probably fit 100,000 of the Toshiba
disks in the area occupied by
RAMAC. Then you could throw in at
least another factor of a 1,000 or so
reflecting the price difference, not
even considering inflation. And don’t
forget power consumption, which
surely must add a bunch more zeros.
I’m having trouble keeping track, so
what the heck, let’s just call it a tril-
lion-fold improvement.

Indeed, the trend might see disks
not only holding their own, but even
replacing memory chips in certain
applications. For example, even as
MP3 players and cell phones rely on
flash memory at the low end (e.g., the
iPod Nano), the growing desire for
mobile video and other bloatware fea-
tures pushes demand back into the
hard disk camp.

Ah, but what about power con-
sumption and durability? Surely the
mechanics of a disk drive are no
match for the efficiency and robust-
ness of a chip, right? Historically,
that’s been true, but the gap is shrink-
ing along with the disk drives them-
selves. Chips have Moore’s law on
their side, but ever tinier disk drives

disk drives either.
Yes, motors spinning rusty metal

platters seem like an artifact of the
industrial revolution compared to
fancy-schmantzy silicon. And yes,
some rotating media has passed on to
that great bit bucket in the sky (e.g.,
vinyl records and the floppy disk). But
the hard disk folks aren’t going down
without a fight.

Let’s put it in perspective. In
“Memory Lane Change,” I marveled
at the fact the latest and greatest
memory chips are roughly 1 billion
times better than the originals, all
things considered (i.e., speed, power,
size, and price). Well, it’s now been 50
years since the invention of the hard
disk by IBM, so now is a good time to
look back and take stock of the
progress.

That pioneering Random Access
Method for Accounting and Control
(RAMAC) unit was as big as a refriger-
ator and weighed a ton (see Photo 1a).
Price-wise you were looking at thou-
sands of dollars, not to purchase a unit
outright but merely to lease it for a
month. Packed inside RAMAC were
50 pizza-sized platters that totaled a
whopping 5 MB of storage and deliv-
ered data at a leisurely 10 Kbps.

Flash forward to the conference and
the latest and greatest in disk drives
courtesy of Toshiba.[1] They’re shipping
4 GB versions of their 0.85″ disk
drives (see Photo 1b). Better yet, by
taking advantage of perpendicular
recording techniques—which inject
the bits deeper into the platter, thereby
increasing a real density—they recently

Quite a heat wave last summer,
and I’m not talking just about the
weather. Once again, the Hot Chips
conference, now in its eighteenth
year, delivered the goods with dozens
of presentations covering the latest
and greatest.

Few designers work at the bleeding
edge where these chips live, but that’s
OK. Hot Chips has never been about
what you should design in today, but
rather it has been about foretelling of
the features and philosophy of the
chips you’ll design in tomorrow.

Indeed, the story isn’t just about
chips either. Despite the conference
name, every now and then the organ-
izers go beyond silicon to come up
with something interesting. Let’s start
with a technology that predates silicon
yet gives chips a run for their money in
terms of delivering more for less.

SPIN TO WIN
In my article on new-age memory

chips a couple of months back
(“Memory Lane Change,” Circuit
Cellar 196), I made the point that they
are the Rodney Dangerfields of sili-
con, unable to get any respect and
toiling in the shadows of their head-
line-grabbing microprocessor superi-
ors. But even within the world of stor-
age, there’s a pecking order that has
memory chips lording it over their
merely mechanical counterparts,
namely hard disk drives. Don’t hold
your breath waiting for a “Hot Disk”
conference. But unless you’re
Houdini, don’t hold your breath wait-
ing for the oft-predicted demise of

Hot Chips 18

SILICON UPDATE by Tom Cantrell

The Hot Chips Conference officially came of age with its 18th birthday.Once again, Tom head-
ed back to Stanford to check out the big chips on campus.The conference may be all grown
up, but Hot Chips are always young at heart.

2712003-Cantrell.qxp 12/5/2006 11:35 AM Page 78

http://www.circuitcellar.com

www.circuitcellar.com Issue 198 January 2007 79CIRCUIT CELLAR®

have Newton’s law on their side. F =
M × A means a less massive disk
requires less force (i.e., power con-
sumption) to do what you want (e.g.,
spin the platter and move the head)
and can tolerate more shocking accel-
erations when something bad happens.

Ironically, it’s a memory chip that
can make all the difference in terms of
hard disk power consumption and
robustness. For an MP3 player, an
entire song that might play for 5 min-
utes can be loaded into a built-in
buffer RAM with less than 1 s of hard
disk access. That means the disk is
idle (consuming little power) with the
head moved to a safe position more
than 99% of the time.

The digital revolution owes much
to Rey Johnson who led the IBM team
in San Jose that invented RAMAC 50
years ago. He may not have a
“law” named after him like
Gordon Moore, but his inven-
tion has and continues to deliv-
er the goods.

FANTASTIC VOYAGE
Maybe a MEMS disk drive is

just around the corner. In the
meantime, the automotive mar-
ket continues to lay the founda-
tion for MEMS move into the
mainstream. Considering new
features like active suspension,
stability control, and tire pres-
sure monitoring, along with the

ever-growing collection of airbags,
each new vehicle is a veritable MEMS
showroom.

Beyond accelerometers and gyros,
some of the more esoteric MEMS con-
cepts are starting to make the move
from lab to fab. For example, the aptly
named SiTime is now in production
with MEMS oscillators that overcome
the accuracy and aging limitations of
earlier efforts. I’m not sure it’s time to
sell your quartz futures, but there’s no
question that SiTime’s tiny “chip”
oscillators have the potential to
replace our little “tin can” friends.
That’s especially true for size-con-
strained applications, which boil
down to pretty much every hand-held
gadget these days.

Remember that Fantastic Voyage
(20th Century Fox, 1966) movie from

way back when? Besides Raquel
Welch doing battle with the antibod-
ies, you may also recall that the gist
of the story was to put a group of sci-
entists in a submarine, shrink ’em
down to size, and inject them into an
ill patient where they engaged in hand-
to-hand combat with what ailed him.

Sounds “fantastic” all right, at least
until you check out the latest in real-
world sci-fi from the Toshiba
Advanced Electron Device Laboratory.
They’re fusing medical science and
engineering to come up with a MEMS-
based “physical antibiotic.”[2]

Although you won’t find them on the
shelf down at your pharmacy anytime
soon, Toshiba has demonstrated suc-
cess in breaching yeast cell walls with
silica nanoparticles using MEMS-
vibrator induced heating (see Photo 2).
Can a mini-me Roto-Rooter that’ll
ream our arteries of all that fast-food
detritus be far behind?

SAY WHAT?
Voice recognition is one of those

“tomorrow’s technologies of tomor-
row” that never quite seems ready for
prime time. Its true progress has been
made by juggling the trade-offs
between vocabulary size, speaker
dependence, and recognition speed.
Notably successful and practical
examples that come to mind include
hands-free dialing for cell phones
(“phone home”) and automated phone
directories.

But as for the holy grail of human-
like voice recognition, even the
mightiest computers have a tough go
of it. Some of you have no doubt seen

the video floating around on
the ’Net of a Microsoft marke-
teer living the nightmare of a
live demonstration of Vista
voice recognition run amok,
with laughably bad results. Just
Google “Vista Voice Demo” or
some such to find a copy.
Maybe they should call it
“Voice Wreckognition.”

The problem isn’t so hard. In
fact, according to researchers at
Carnegie Mellon University,
the problem is soft, as in the
bloaty software behind the cur-
tain of current voice recogni-

Photo 2—Brave new world indeed. This photo shows a Toshiba “physical
antibiotic” experiment in which silica particles were electronically targeted
to breech the walls of a yeast cell.

Photo 1—Do you know the way to San Jose? You should, because it was home to the IBM research lab that devel-
oped RAMAC (a), the first hard disk drive. From those humble beginnings, this Toshiba 0.85″ drive (b) demon-
strates how far we’ve come—and the party isn’t over yet.

a) b)

2712003-Cantrell.qxp 12/5/2006 11:35 AM Page 79

http://www.circuitcellar.com

80 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

ically up to the task, presumably it
has something better to do. After all,
the CPU in a PC could also push the
pixels around on the screen, but that’s
left for a graphics coprocessor. PC
aside, you can see how the 1-10-100-
1000 rule that’s an inconvenience on
the desktop is a showstopper for
something like a cell phone.

Furthering the challenge, interest is
emerging in the concept of “faster-
than-real-time” recognition. The
example used in the CMU presenta-
tion is saying “Hasta, la vista, baby!”
to search for the movie where Arnold
says that famous line. Or how about
humming a few notes to find a song?
Of course, to the degree faster than

tion schemes.[3] For speaker-independ-
ent, large vocabulary, continuous
speech recognition, they’ve come up
with a 1-10-100-1000 rule of thumb
that goes something like this: “To
achieve 1× (i.e., real-time) recognition
with a 10% or less error rate requires
100 MB of software on a computer
consuming 100 W with a 1,000-MHz
CPU.”

Today’s PC should be able to handle
that. Indeed, if you Google the subject
a little further, you’ll learn that the
aforementioned Vista demo faux pas is
said to be attributable to a bug
(improper gain setting), and you’ll also
find video of more successful demos.
But even though a PC may be theoret-

real-time search is a goal, it directly
ups the ante in terms of processing
power.

As an aside, the latest take on the
subject of voice recognition exploits
“lip-reading,” supplementing the
audio input with video of the speak-
er.[4] Indeed, in favorable (i.e., “talking
head”) conditions, video-only recog-
nizers by themselves can do a pretty
good job. I wouldn’t write the eulogy
for QWERTY just yet, but maybe
there’s a combination of audio and
video input backed by dedicated hard-
ware that can take voice recognition
to the next level.

Got a hard problem? That’s why
they call it “hardware.” When the
going gets tough, the tough design a
chip, which is just what the CMU
researchers are doing with their “In
Silico Vox” project.

They started with bit-by-bit analysis
of the way software recognizers work.
Basically, it’s a three-step process
comprised of acoustic front-end, fea-
ture extraction, and word search, the
latter complicated by the need for lan-
guage context and awareness to dis-
criminate between, for example, bye,
buy, and by.

Next, they focused on portions of
the existing algorithms amenable, or
modifiable to be so, to execution by
dedicated hardware. The resulting
hardware requirements are quite dif-
ferent from a general-purpose CPU
because features like floating point
and giant caches turn out to be of lit-
tle use for the specific task at hand (er,
mouth).

Understanding what’s going on
under the hood, the CMU team has

Figure 1—As this example of an 8:1 mux demon-
strates, the new six-entry LUT in the Xilinx Virtex-5 can
boost performance by reducing the logic depth and sig-
nal fan-out compared to the older four-entry LUT.

LUT417
16

LUT415
14

13
12

LUT4

11
10

LUT4

A0

A1

A2

Virtex-4
Architecture

LUT615

17
16

14

LUT6

11

13
12

10

A1
A0

A2

Virtex-4
Architecture

Recognizer Word error rate (%) Clock (GHz) Speedup over real time

SPHINX 3.3 (fast decoder) 7.32 1 0.74×

SPHINX 4 (single CPU) 6.97 1 0.82×

SPHINX 4 (dual CPU) 6.97 1 1.05×

SPHINX 3.0 (single CPU) 6.707 2.8 0.59×

Hardware model 6.725 0.125 1.67×

Table 1—Compared to a software speech recognizer (SPHINX) running on big iron, the Carnegie Mellon hardware
approach proves a little silicon can go a long way. Hardwiring the basic recognition algorithms delivers competitive
performance while slashing cost, power consumption, and clock rate.

2712003-Cantrell.qxp 12/5/2006 11:35 AM Page 80

http://www.circuitcellar.com
http://www.lemosint.com

www.keil.com800-348-8051

Only 4 Steps...
...are required to generate efficient, reliable

applications with the μVision IDE and

development tools from Keil.

Step 1. Select Microcontroller and

SpecifyTarget Hardware

Use the Keil Device Database () to find the

optimum microcontroller for your application.

In Vision, select the microcontroller to pre-configure tools and

obtain CPU startup code.

www.keil.com/dd

μ

Step 2. Configure the Device and

Create Application Code

The μVision Configuration Wizard helps you tailor startup code

to match your target hardware and application requirements.

Extensive program examples and project templates help you

jump-start your designs.

Step 3. Verify Program Execution with

Device Simulation

High-speed simulation enables testing

before hardware is available and helps you

with features like instruction trace, code

coverage, and logic analysis.

Step 4. Download to Flash and

Test Application

Once your application is runs

in simulation, use the Keil

ULINK USB-JTAG Adapter for

Flash programming and final

application testing.

Keil Microcontroller DevelopmentTools

help you create embedded applications quickly

and accurately. Keil tools are easy to learn and

use, yet powerful enough for the most

demanding microcontroller projects.

Components of Keil Microcontroller Development Kits

Keil makes C compilers, macro assemblers,

real-time kernels, debuggers, simulators,

evaluation boards, and emulators.

Over 1,200 MCU devices are supported for:

- 8051 and extended 8051 variants

- C166, XC166, and ST10

- ARM7, ARM9, and Cortex-M3

Download an evaluation version from

�

�

�

8-bit

16-bit

32-bit

www.keil.com/demo

81.qxp 12/5/2006 1:31 PM Page 1

http://www.keil.com/dd
http://www.keil.com/demo
http://www.keil.com

82 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

come up with a design
for an ASIC that simu-
lates favorably compared
to current state-of-the-
art software recognizers
running on high-perform-
ance PCs (see Table 1).
Better yet, they’ve even
prototyped a version,
albeit slightly less capa-
ble (simplified vocabu-
lary, not quite real time),
that runs in an FPGA.

Speaking of FPGAs,
Xilinx gave a presenta-
tion on their latest-and-
greatest Virtex-5
FPGA.[5] For perform-
ance-at-any-price appli-
cations such as prototyp-
ing an ASIC, this puppy
is a designer’s dream come true.

Moore’s law’s stride may be getting
shorter, but it’s still got legs. With the
move from 90 to 65 nm, Xilinx can
cram 1 billion transistors on their lat-
est rocket-science chips, even as they
predict 5 billion transistors by 2010.

You’ve come a long way, baby!
Like watching your kids grow, you

don’t notice the day-to-day changes
that turn the little rug rat into the
strapping lad who wants to borrow
the car. Looking under the hood, it’s
amazing to see how fancy today’s

FPGA is compared to
the original.

Actually, the famil-
iar LUT-based logic
cell is relatively recog-
nizable, although hav-
ing grown to six inputs
from the originals four
(see Figure 1). The
wider LUTs enable the
depth of logic to be
reduced, thereby
increasing speed. In
addition, now the
LUTs are broken into
two camps: regular and
so-called “M-LUTs.”
The latter features
some local RAM and
shift registers.

Moving up the ladder
with functional specialization is what
really sets the modern FPGA apart.
Xilinx has gone as far as to split their
product line into four Application-
Specific Modular Block (ASMBL)
camps: logic, serial I/O, DSP, and
PowerPC. Under the hood, there are

Figure 2—The problem with hot chips isn’t just that they’re too hot to handle. It’s getting to the
point where power and cooling costs exceed the costs of the computers themselves.[15] (Source:
J. Humphreys and J. Scaramella, “The Impact of Power and Cooling on Data Center
Infrastructure,” 201722, 2006.)

$90

$80

$70

$60

$50

$40

$30

$20

$10

$0
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

18

16

14

12

10

8

6

4

2

0

Spending
(Billions)

New server spending

Power and cooling

Installed base
 (M units)

Bring this pass to the Santa Clara Convention Center to gain FREE access to the
following and be entered to win one of many fabulous high-tech prizes!

International Engineering
Consortium
www.iec.org

FREE Exhibition Pass A $75 Value
Connecting the World of Electronic Design

Conference Jan. 29 – Feb. 1, 2007
Exhibition Jan. 30 – 31, 2007

www.designcon.com/2007

Santa Clara Convention Center

Santa Clara, California, USA

• 125+ Exhibitors

• Plenary and Technical Panels

• Technology Pavilions

• Keynote Addresses

• TecPreviews

• Networking Receptions

2712003-Cantrell.qxp 12/5/2006 11:35 AM Page 82

http://www.iec.org
http://www.designcon.com/2007
http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 83

all manner of block RAMs (including
dedicated FIFO and ECC logic), DSP
accelerators, 500-plus-MHz clock
synthesizers, and gigahertz-class pin
drivers.

Xilinx put the V5 architecture to
the test with a myriad of benchmarks,
one example being the latest version
of their Microblaze softcore processor.
In essentially the same silicon area,
V5 was able to both expand the MIPS
per megahertz (by stretching the
pipeline from three to five stages) and
boost the clock rate by more than
10% (180 to 201 MHz) for a total per-

formance improvement of nearly 40%.
Not that the journey onward and

upward isn’t a bit rocky. The show-
stopper of leakage current looms
while 1-V operation leaves little mar-
gin for error. And wiggling the pins
faster (2 V/ns) and harder (50 mA/ns)
creates all kinds of signal integrity and
noise challenges for the board and box
designer. As one slide in their presen-
tation sums up: “Complex chip,
complex package, complex board”—
to which they forgot to add “com-
plex tools.”

Oh well, nobody said it would be

easy. Actually that’s not quite
true. There’s usually some guru
that predicts it will be easy soon,
but it never is.

RAMPING UP
If you’ve followed my yearly

columns on the Hot Chips confer-
ence, you know there’s been a sea
change in high-end processor
design. Everybody now accepts
the fact that simply pumping
more steroids into a muscle-

bound “SuperDuper” processor is a
dead end. Besides diminishing bang-
per-buck from architectural bloat, the
approach is doomed to go down in
flames, literally, as these “hot chips”
get too hot to handle (see Figure 2).
Although it won’t be easy, the only
apparent solution, brute force it may
be, is to combine multiple simpler
and lower-power CPU cores on a sin-
gle chip, the so-called Chip Multi-
Processor (CMP).

More on that in a moment, but first
I should emphasize this doesn’t mean
single-CPU chips are dead by any

Ambric 45-bric chip Ambric 70-bric estimate TI C641x DSP
Xilinx Vertex-4
LX100–LX200

Process 130 nm 90 nm 90 nm 90 nm

Megahertz 333 MHz Est. 450 MHz. 1,000 MHz 500 MHz nominal

Published DSP
benchmarks

10–25× throughput,
one-third the code

Est. 20–50× throughput,
one-third the code

1× —

Multiply-Accum./Sec.
(16 × 16 to 32 bit)

60 GMACS Est. 125 GMACS 4 GMACS 48 GMACS

Table 2—Novel multicore architectures, such as the TeraOps chip from Ambric, offer the promise of shaking things up.
And it’s not just the idea of putting multiple CPUs on a single die, but also novel programming techniques that make them
easy to use effectively. Ambric uses a structural object/message programming language said to significantly reduce devel-
opment time and cost.

2712003-Cantrell.qxp 12/5/2006 11:35 AM Page 83

http://www.circuitcellar.com
http://www.cipherlinx.com
http://www.futurlec.com

84 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

brake that limits performance to a
lesser, but fixed and predictable, level.

The results for the ARM966HS are
decently impressive. Compared to the
synchronous equivalent (i.e., the
ARM968E), die size and transistor count
are only slightly larger, but the async
design consumes only one-third of the
power for a given level of performance.

OK, now back to the CMPs. First,
let me dispense with the ’x86 PC-side
of the story. One comment I over-
heard expressed fears of a possible
“core race” in which the number of
cores a PC has itself becomes the goal,
not whether they are used effectively.
To which I say, be afraid, be very
afraid. The fact is, the PC market is
already jumping (and will continue to
do so) all over multi-core as a keep-
up-with-the-Joneses selling feature.

The more interesting action on the
CMP front is with embedded chips
because they are less constrained by
need for compatibility with an exist-
ing software base or, for that matter,
conventional programming tech-
niques. Let’s consider a sampling of
CMPs taken from the conference
aptly demonstrating the broad scope
of architectural alternatives.

The NXP (founded by Philips)
PNX8535 “HDTV-on-a-chip” com-
bines a MIPS core with the company’s
TriMedia A/V accelerator.[8] The NXP
Nexperia Mobile Multimedia
Processor similarly combines a
TriMedia with an ARM926.[9] The
Renesas SH-MobileG1 combines their
own SH core with two ARM cores
that handle real-time, baseband, and

means. The vast majority of
simple blue-collar applications
are still serviceable by a single
CPU now and forever.
Nevertheless, whether a single-
or multi-core, less power is
always better.

The most popular approach to
reducing power is clock gating,
which allows power manage-
ment hardware and/or software
to dynamically turn off the
clock to unused circuits. A related
embellishment is dynamic fre-
quency and voltage scaling, where-
by the clock rate and supply volt-
age are adjusted in real time to the
bare minimum required to meet the
instantaneous performance demand.

The PWRficient family of proces-
sors from PA Semi is a good example
of a design, where in their words,
“Power is the first-order design princi-
ple.”[6] Features include more than
15,000 (!) clock gates and independent
dynamic voltage and frequency scaling
for each core in their dual-core chip.
Special low-power modes allow vary-
ing the trade-off between wakeup
time and the amount of architectural
state that is saved. They even go as far
as to customize the VDD spec for each
individual part. The result is a very
high-performance 2-GHz, 64-bit
PowerPC that consumes a fraction of
the power you might expect: just 7 W
maximum (4 W typical) for the proces-
sor core, including 128 KB of L1 cache.

A more esoteric approach to cutting
power consumption is found in the
“clockless” asynchronous ARM996HS
from Handshake Solutions.[7] The
async approach can be considered
“perfect clock gating” in the sense that
the only circuits that consume power
are those actually doing something.

The good news is that an asynchro-
nous design always delivers the maxi-
mum possible performance for a given
set of environmental conditions (tem-
perature, voltage level, and process
variation). The bad news is that the
environment does indeed change,
which means performance can vary.
The ARM966HS addresses this con-
cern with the ability to synchronize
internal operations to an external
clock. In essence, this acts like a

application tasks respective-
ly.[10]

The Sun Niagra-2 I-way serv-
er farm chip features eight
SPARC cores.[11] The UC Davis
Asynchronous Array of Simple
Processors (AsAP) has 36 16-bit
processors in the first proto-
type, and it’s said to be scalable
to hundreds and even thou-
sands of cores.[12]

The Ambric TeraOps chip is
kind of like an FPGA, except
the “logic cell” is a 32-bit
processor (see Table 2). The first
chip has 360 processors, and the
next will have 560.[13] And finally,

the Connex media processor features
1,024 linearly connected small-and-
simple 16-bit processors.[14]

Just keep in mind all this CMP stuff
is relatively uncharted territory. An
architectural brainstorm, like talk, is
cheap—but chips aren’t. The problem
is how to validate a back-of-the-nap-
kin architectural idea without having
to cough up the big bucks to actually
make a chip.

Enter the Research Accelerator for
Multiple Processors (RAMP) project led
by David Patterson of UC Berkeley and
a stellar cast of luminaries (http://ramp.
eecs.berkeley.edu/index.php). As an
aside, I noticed one of the participants
is Jan Gray, whom you may remember
as the author of the excellent “RISC in
an FPGA” article series back in 2000.
Check out his RAMP ruminations in
“Mapping CMPs to Xilinx FPGAs.”

The idea is pretty simple. Cram a
bunch of FPGAs and DRAMs into a box
serving as a test bed for CMP prototyp-
ing. Yes, at an estimated cost of
$100,000 for a Berkeley Emulation
Engine 2 (BEE2) box, it isn’t cheap, but
it’s a heck of a lot less costly and time
consuming than spinning a custom chip
(see Photo 3). Perhaps most importantly,
actually running code on silicon (albeit
performance limited to perhaps 10%
that of a real chip) delivers results that
are fundamentally more credible than
simulation or other guesstimates.

STAY COOL
Hot Chips serves as the checkpoint

that enables everyone to calibrate
their compass for the journey ahead.

Photo 3—Actually making a CPU chip is something few can afford, all the
more so for starving students.The RAMP project relies on a bunch of FPGAs
and DRAMs packed into a BEE box to provide a common, and relatively inex-
pensive, proving ground for architectural prototyping and experimentation.

2712003-Cantrell.qxp 12/5/2006 11:35 AM Page 84

http://ramp.eecs.berkeley.edu/index.php
http://ramp.eecs.berkeley.edu/index.php
http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 85

REFERENCES

[1] A. Takeo, et al, “Ultra Small HDD
for Mobile Applications,” Hot Chips
18, www.hotchips.org.

[2] K. Suzuki, et al, “Micro
Manipulator Array for Nano-
Bioelectronics Era,” Hot Chips 18,
www.hotchips.org.

[3] R. Rutenbar, et al, “In Silico Vox:
Toward Speech Recognition in
Silicon,” Hot Chips 18,
www.hotchips.org.

[4] A. Eisenberg, “What’s Next:
Beyond Voice Recognition to a
Computer that Reads Lips,” New
York Times, September 11, 2003.

[5] S. Douglass, “Virtex5: The Next
Generation 65nm FPGA,” Hot Chips
18, www.hotchips.org.

[6] T. Yeh, “The Low-Power, High-
Performance Architecture of the
PWRficient Processor Family,” Hot
Chips 18, www.hotchips.org.

RESOURCES
J. Gray, “Mapping CMPs to Xilinx
FPGAs,” Microsoft Corp., http://ramp.
eecs.berkeley.edu/Publications/Mapping
%20CMPs%20to%20Xilinx%20FPGAs.
ppt.

Hot Chips Conference,
www.hotchips.org.

MEMS oscillators, SiTime,
www.sitime.com.

RAMP Project, http://ramp.eecs.berkeley.
edu/.

[7] A. Bink, “ARM966HS: The First
Licensable, Clockless, 32-bit
Processor Core,” Hot Chips 18,
www.hotchips.org.

[8] B. Pronk, “Highly Integrated
Nexperia PNX8535 Hybrid Television
Processor,” Hot Chips 18,
www.hotchips.org.

[9] S. Mutz, “Heterogeneous
Multiprocessing for Efficient Multi-
Standard High-Definition Video
Decoding,” Hot Chips 18,
www.hotchips.org.

[10] M. Ito, “SH-MobileG1: A Single-
Chip Application and Dual-mode
Baseband Processor,” Hot Chips 18,
www.hotchips.org.

[11] G. Grohoski, “Niagra2: A Highly-
Threaded Server-on-a-Chip,” Hot
Chips 18, www.hotchips.org.

[12] B. Baas, “Hardware and
Applications of AsAP: An
Asynchronous Array of Simple
Processors,” Hot Chips 18,
www.hotchips.org.

[13] L. Anderson, “TeraOPS Hardware:
A New Massively-Parallel, MIMD
Computing Fabric IC,” Hot Chips 18,
www.hotchips.org.

[14] G. Stefan, “The CA1024: A Fully
Programmable System-On-Chip for
Cost-Effective HDTV Media
Processing,” Hot Chips 18,
www.hotchips.org.

[15] B. Meyerson, “Collaborative
Innovation: A New Lever in
Information Technology
Development,” Hot Chips 18,
www.hotchips.org.

Tom Cantrell has been working on
chip, board, and systems design and
marketing for several years. You may
reach him by e-mail at tom.cantrell
@circuitcellar.com.

We can see that the hot chips of tomor-
row will be the ones that can be cool at
the same time. In the meantime, keep
that fire extinguisher handy.

The emergence of multicore as the
leading design paradigm will shake
things up a bit. It will be exciting to
see the novel hardware and software
schemes that emerge as architects
engage in hand-to-hand combat with
some really hard problems.

FPGAs continue to march onward
and upward. While the rocket-science
Virtex-5 and $100,000 RAMP boxes
are bleeding edge, the implications for
the mainstream market are clear:
FPGA price and performance are
headed your way.

With all the excitement, let’s not for-
get the people. I’d like to say thanks to
the organizers of the Hot Chips confer-
ence, all of whom are volunteers (and
many were so from the very beginning),
for once again putting on a classy show.
Hot Chips was 18, and I liked it. I March, Issue #200

Robotics

Space Close: Jan. 12

BONUS DISTRIBUTIONS:

CTIA Wireless &

Trinity College Robotics Contest

April, Issue #201

Embedded Programming

Space Close: Feb. 12

Call: Shannon Barraclough

(860) 872-3064

Shannon@circuitcellar.com

Call: Shannon Barraclough

(860) 872-3064

Shannon@circuitcellar.com

BONUS DISTRIBUTIONS:

Embedded Systems Conference West

2712003-Cantrell.qxp 12/5/2006 11:35 AM Page 85

mailto:tom.cantrell@circuitcellar.com
http://www.hotchips.org
http://www.hotchips.org
http://www.hotchips.org
http://www.hotchips.org
http://www.hotchips.org
http://www.hotchips.org
http://www.hotchips.org
http://www.hotchips.org
http://www.hotchips.org
http://www.hotchips.org
http://www.hotchips.org
http://www.hotchips.org
http://www.hotchips.org
http://www.hotchips.org
http://www.hotchips.org
http://www.sitime.com
http://ramp.eecs.berkeley.edu
mailto:Shannon@circuitcellar.com
http://www.circuitcellar.com
http://www.picservo.com
http://ramp.eecs.berkeley.edu/Publications/Mapping%20CMPs%20to%20Xilinx%20FPGAs.ppt
http://www.decadenet.com

86 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

IDEA BOX
THE DIRECTORY OF PRODUCTS AND SERVICES

AD FORMAT: Advertisers must furnish digital submission sheet and digital files that meet the specifications on the digital submission sheet.
ALL TEXT AND OTHER ELEMENTS MUST FIT WITHIN A 2″″ ×× 3″″ FORMAT. Call for current rate and deadline information. Send your disk and digital submission sheet
to: IDEA BOX, Circuit Cellar, 4 Park Street, Vernon, CT 06066 or e-mail adcopy@circuitcellar.com. For more information call Shannon Barraclough at (860) 872-3064.

The Suppliers Directory at www.circuitcellar.com/suppliers_dir/
is your guide to a variety of engineering products and services.

UUSSBB
Add USB to your next

project—it’s easier than you
might think!

USB-FIFO up to 8 mbps

USB-UART up to 3 mbps

USB/Microcontroller boards

pre-programmed with firmware

2.4GHz ZigBee™ & 802.15.4
RFID Reader/Writer

Absolutely NO driver software

development required!

www.dlpdesign.com

phyCORE® OEMable Single Board Computers

PHYTEC America, LLC � 203 Parfitt Way SW, G100 � Bainbridge Island, WA 98110 USA

XScale:XScale:XScale:XScale:XScale: PXA270, PXA255

ARM:ARM:ARM:ARM:ARM: LPC3180 (ARM9); LPC22xx, LPC229x, AT91 (ARM7)

PowerPC:PowerPC:PowerPC:PowerPC:PowerPC: MPC5554, MPC5200B, MPC565, MPC555

ColdFire:ColdFire:ColdFire:ColdFire:ColdFire: MCF5485

C 1 6 6 / X C 1 6 x / S T 1 0 / 8 0 5 1 CANCANCANCANCAN
x86x86x86x86x86::::: Elan SC520

www.phytec.com � (800) 278-9913 � www.phycore.com

Faster-to-Market: Save time by

integrating a PHYTEC Single

Board Computer Module into

your target circuitry.

Make -or - Buy: Why make

your own when you can buy

PHYTEC off-shelf solutions,

cost-effective to 1000s units/year?

Integrated Support Services: Let PHYTEC assist you in the design of your

end product: from tools and RTOSes to production. Our hardware is

bundled with leading compilers (Keil, IAR, CodeWarrior), RTOSes (WinCE,

Linux) and debuggers.

Immediate Support: Talk to PHYTEC technical staff with every call. No

waiting for answers.

Your OEM solution: With 20 years design, production, and integration

experience, PHYTEC is your OEM partner.

Blackfin:Blackfin:Blackfin:Blackfin:Blackfin: BF537

ib-198.qxp 12/4/2006 12:48 PM Page 86

mailto:adcopy@circuitcellar.com
http://www.circuitcellar.com/suppliers_dir
http://www.dlpdesign.com
http://www.phytec.com
http://www.phycore.com
http://www.circuitcellar.com
http://www.ozitronics.com
http://www.teamfdi.com
http://www.protechelectronics.com
http://www.smxrtos.com/usb

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 87

ib-198.qxp 12/4/2006 12:48 PM Page 87

http://www.circuitcellar.com
http://www.canusb.com
http://www.can232.com
http://www.imagecraft.com
http://www.reachtech.com
http://www.stx104.com
http://www.rabbitappkits.com
http://www.pioneercontroller.com
http://www.mcc-us.com

88 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

Pioneer Hill Software
360 697-3472 voice
pioneer@telebyte.comPHS

SpectraPLUS 5.0
Audio Spectrum Analysis
Features
Sound Card based I/O
FFT sizes to 1048576pts, 1/96 Octave
Up to 24 bit, 200kHz sampling rates
3-D Surface and Spectrogram
Digital Filtering, Signal Generation
THD, IMD, SNR, Transfer Functions
DDE, Macros, Data Logging,
Vibration Analysis, Acoustic Tools

FREE 30 day trial!
www.spectraplus.com

ICD2 clone kit

PIC12F683-I/P

PIC16F54-I/P

$36

$1.17

$0.78

Low shipping.

FREE shipping on
qualifying orders.

Digikey pooling
to save you S/H.

See website
for details.

DIPmicro Electronics
Fax: (866) 603-7109 sales@dipmicro.com

www.dipmicro.com

Electronic parts for less Full Speed CAN
USB Adapter

+1 630-245-1445
Naperville, Illinois USA
www.c-a-n.com

$235.00

Qty 1

� Simple configuration & use
� 10% Discount for first

orders Code: GRIDCC20

ib-198.qxp 12/4/2006 12:49 PM Page 88

mailto:sales@dipmicro.com
http://www.dipmicro.com
http://www.spectraplus.com
mailto:pioneer@telebyte.com
http://www.c-a-n.com
http://www.circuitcellar.com
http://www.technologicalarts.com
http://www.tri-plc.com/cci.htm
http://www.circuitcellar.com/products/cd.asp
http://www.emicros.com
http://www.zanthic.com
http://www.allelectronics.com

586-based Industrial Controller

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 89

WWW.MYLYDIA.COM

MYLYDIA, INC.MYLYDIA, INC.
LLaayyoouutt GGeerrbbeerr,,

PPrroottoottyyppee MMaakkiinngg

QQUUIICCKK TTUURRNN
PPCCBB && TTuurrnnkkeeyy

@
TThhee BBeesstt PPrriicceess

Sales@mylydia.com

WWW.MYLYDIA.COM

ib-198.qxp 12/4/2006 12:49 PM Page 89

mailto:Sales@mylydia.com
http://www.circuitcellar.com
http://www.pcbcart.com
http://www.scidyne.com
http://www.earthlcd.com
http://www.pcbfabexpress.com
http://www.msc-conf.com
http://www.tern.com
http://www.mylydia.com

90 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

Mosaic Industries Inc.
tel: 510-790-1255 fax: 510-790-0925

www.mosaic-industries.com

� Standard RJ45 jack hosts
10/100Mbit Ethernet

� HTTP, SMTP, TCP, DHCP, ICMP,
and ARP Protocols

� Email program-controlled messages
to a specified LAN IP address

� Establish a TCP/IP connection to
exchange binary or ASCII data

� Serve software-controlled dynamic
content to your web browser

$140/100s

EtherSmart WildcardTM

Network -Enables Your Product

ib-198.qxp 12/4/2006 12:49 PM Page 90

http://www.mosaic-industries.com
http://www.circuitcellar.com
http://www.intrepidcs.com
http://www.conitec.net
http://www.steroidmicros.com
http://www.apcircuits.com
http://www.ccsinfo.com/picc
http://www.frontpanelexpress.com

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 91

��� ����� ��	. .��� ����� ��	. .

High Quality Enclosures
The Most Competitive Price
*

*

*

*

*

* , ,

Sheet Metal Cabinets
Aluminium Extruded Enclosures
19inch Standard Cabinets

Highly Custom Made
Fast Prototyping
From 1pc to 10 000 000 pcs

*

*

Plastic Injection
Precision Aluminium Die Casting

www.schmartboard.com

ANYONE
Can Now Easi ly

Hand Solder Surface-
Mount Components!

Even A 10
Year Old!

ib-198.qxp 12/4/2006 12:49 PM Page 91

http://www.schmartboard.com
http://www.circuitcellar.com
http://www.gridconnect.com
http://www.smxrtos.com
http://www.aagelectronica.com
http://www.ezpcb.com
http://www.jkmicro.com
http://www.picofab.net
http://www.pulsar-inc.com

92 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

DDevelopmentt Toolss forr PIC® Microcontrollers

microEngineeringg Labs,, Inc. Phone:: (719)) 520-5323
Fax:: (719)) 520-1867

Boxx 60039
Coloradoo Springs,, COO 80960

Orderr onlinee at:
www.melabs.com

BASIC Compilers for PICmicro®

PICBASIC PRO™ Compiler $249.95

Easy-To-Use BASIC Commands
Windows 9x/Me/2K/XP Interface

PICBASIC™ Compiler $99.95
BASIC Stamp 1 Compatible
Supports most 14-bit Core PICs
Built-In Serial Comm Commands

Supports All PICmicro® MCU Families
Direct Access to Internal Registers
Supports In-Line Assembly Language
Interrupts in PICBASIC and Assembly
Built-In USB, I2C, RS-232 and More
Source Level Debugging

See our full range of products, including
books, accessories, and components at:

www.melabs.com

USB Programmer
for PIC® MCUs

Includes:
Programmer, USB Cable,
ZIF Programming Adapter for 8 to 40-pin DIP,
Software for Windows 98/Me/NT/2K/XP

Pre-Assembled Boards
Available for 8, 14, 18, 28,
and 40-pin PIC® MCUs
2-line, 20-char LCD Module
9-pin Serial Port
Sample Programs
Full Schematic Diagram

Pricing from $79.95 to $349.95

PICPROTO™ Prototyping Boards
Double-Sided with Plate-Thru Holes
Circuitry for Power Supply and Clock
Large Prototype Area
Boards Available for Most PIC® MCUs
Documentation and Schematic

Pricing from $8.95 to $19.95

LAB-X Experimenter Boards

Parallel Port Programmer
starting at $59.95
Serial Port Programmer
starting at $79.95EPIC™

(with accessories)
$119.95

RoHS
Compliant
Programs
PIC MCUs
including
low-voltage
(3.3V) devices

ib-198.qxp 12/4/2006 12:49 PM Page 92

http://www.melabs.com
http://www.melabs.com
http://www.circuitcellar.com
http://www.tracesystemsinc.com
http://www.ironwoodelectronics.com
http://www.ontrak.net
http://www.jstamp.com
http://www.taltech.com

1 2 3

4 5

6

7

8 9

10

11 12

13 14

15

16 17

www.circuitcellar.com CIRCUIT CELLAR® Issue 198 January 2007 93

CCRROOSSSSWWOORRDD

Across
1. A bad solution to a software or hardware

problem
4. To adjust the spacing between letters
6. Free software
7. An exact replica
10. Having a positive and negative pole
11. Regards, Managing Editor, Circuit Cellar,

www.circuitcellar.com
14. FF
16. Quicksilver; planet; Roman god (mythology)
17. Text message: “Beam me up, Scottie.”

The answers are available at
www.circuitcellar.com/crossword.

Down
2. Abbreviation: LC
3. Current
5. @>—;—
7. The portion of a spreadsheet that holds data and is

identified by its row and column
8. The white space between text and the edge of a docu-

ment
9. A person online who serves as an intermediary

between a vendor and a consumer
11. Ink-less pen
12. Button holder: Save, Cut, Copy, Paste …
13. A series of objects (e.g., characters)
15. The “A” in VA

crossword2.qxp 12/5/2006 11:28 AM Page 93

http://www.circuitcellar.com/crossword
http://www.circuitcellar.com

94 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

Modular Wireless Tracking System

RFID Security System

DSP-Based Vehicle Monitoring

Wireless Firmware Update

Universal Modbus Simulator (Part 1): Theory and Preparation

Nixie Tube Propeller Clock

Build a Reflow Oven Controller

ABOVE THE GROUND PLANE Battery Capacity: Discharge

APPLIED PCs Embedded Capacitive Touch Applications

FROM THE BENCH Electric Movement and Control

SILICON UPDATE Traveling Man

91 AAG Electronica, LLC

90 AP Circuits

64 APEC

88 All Electronics Corp.

87 Apex Embedded Systems

8 Arcom Control Systems

14 Arcturus Networks

7, 33 Atmel

66 Bitscope Designs

74 CTIA Wireless

65 CWAV

23 CadSoft Computer, Inc.

90 Conitec

90 Custom Computer Services, Inc.

1 Cypress MicroSystems

88 DIPmicro Electronics

86 DLP Design

85 Decade Engineering

82 DesignCon West

45 EMAC, Inc.

89 Earth Computer Technologies

10 Elprotronic

88 eMicros

19 ExpressPCB

91 ezPCB

The Index of Advertisers with links to their web sites is located at www.circuitcellar.com under the current issue.
Page

86 FDI-Future Designs, Inc.

90 Front Panel Express, LLC

83 Futurlec

89 General Circuits, Inc.

88, 91 Grid Connect

95 HI-TECH Software LLC

55 IPC (Printed Circuits Expo)

87 IMAGEcraft

90 Intec Automation, Inc.

90 Intrepid Control Systems

25 Intronix Test Instruments, Inc.

92 Ironwood Electronics

64, 91 JK microsystems, Inc.

11 Jameco

85 Jeffrey Kerr, LLC

18, 81 Keil Software

42 LabJack Corp.

42 Lakeview Research

22 Lantronix

87 Lawicel AB

80 Lemos International

2 Link Instruments

83 Linx Technologies

17 Luminary Micro

87 MCC

89 MSC Conference

34 MVS

9 Maxstream

86, 91 Micro Digital, Inc.

92 microEngineering Labs, Inc.

90 Mosaic Industries, Inc.

71 Mouser Electronics

89 Mylydia, Inc.

C2 NetBurner

42 Nurve Networks LLC

92 Ontrak Control Systems

86 Ozitronics

89 PCB Fab Express

15 PCB-Pool

C4 Parallax, Inc.

86 Phytec America LLC

91 Picofab Inc.

87 Pioneer Automation, Inc.

88 Pioneer Hill Software

39 Pololu Corp.

86 Pro-Tech Electronics Canada

91 Pulsar, Inc.

3, 18 Rabbit Semiconductor

87 Rabbit Semiconductor

87 Reach Technology, Inc.

Page Page Page

5 Renesas

91 Schmartboard

89 Scidyne Corp.

63 SEGGER Microcontroller Sys. LLC

10 Sierra Proto Express

92 Systronix

92 TAL Technologies

C3 Tech Tools

72, 73 Technologic Systems

88 Technological Arts

45 TEK Industries, Inc.

89 Tern, Inc.

9 Tianma Microelectronics

32 Tibbo Technology, Inc.

92 Trace Systems, Inc.

16 Tri-M Systems, Inc.

88 Triangle Reasearch Int’l, Inc.

88 Zanthic Technologies, Inc.

March Issue 200
Deadlines

Space Close: Jan. 12
Material Close: Jan. 22

Theme:
Robotics

BONUS DISTRIBUTION:
CTIA Wireless,

Trinity College Robotics Contest

ATTENTION ADVERTISERS

Call Shannon Barraclough
now to reserve your space!

860.872.3064
e-mail: shannon@circuitcellar.com

INDEX OF ADVERTISERS

Preview of February Issue 199
Theme: Wireless Communications

94-advertiser's index.qxp 12/5/2006 12:22 PM Page 94

http://www.circuitcellar.com
mailto:shannon@circuitcellar.com
http://www.circuitcellar.com

HI-TECH Software delivers
the industry’s most reliable
embedded software development
tools and compilers for over 12
different 8-bit, 16-bit, 32-bit, and
DSP chip architectures!

S O F T W A R E

HI-TECH Software LLC 6600 Silacci Way Gilroy, CA 95020 USA

Ph: 800 735 5715 Web: http://www.htsoft.com/

We make
chips think

intc;while(1
){

c =
ge

tc
ha

r()

;if
(c

==
EO

F)
br

ea
k;

if (

isu
pper(c)) putchar(‘U’),u++; if (islow

er(c))putchar(‘l’),l++

#inclu
de

<ctype.h>

#include

<s
td

io
.h

>

n,u,l,d,p;

main() {

unsig
ned

;i
f(

is
di

gi
t(c

))
pu

tc
ha

r(‘
#’)

,d+
+; if(ispunct(c))

As one of the top five compiler vendors with the largest variety of supported chip architectures,
HI-TECH Software’s product range is renowned for delivering cutting-edge technology and
robust results for development teams worldwide.

putchar(‘?’)

,p++;n++;}}

HI-TECH C® is a registered trademark of HI-TECH Software. HI-TECH PICC™, HI-TECH PICC-18™ and HI-TECH dsPICC™ are licensed exclusively to HI-TECH Software by Microchip Technology Inc.
All other trademarks and registered trademarks are the property of their respective owners.

To see how our compilers can improve your productivity, download a demo now at www.htsoft.com/downloads/demos.php.

With over two decades of industry

experience, our long-term

relationships with leading chip

manufacturers ensure that our

products are tightly attuned to new

technological releases.

Whichever processor family you
are targeting, HI-TECH Software’s C
compilers can help you write better
code and bring it to market faster.

HI-TECH PICC™ Enterprise Edition

HI-TECH PICC™

HI-TECH PICC-18™

HI-TECH dsPICC™

HI-TECH C® for ARM®

HI-TECH C® for 8051

HI-TECH C® for MSP430

HI-TECH C® for HOLTEK MCU

HI-TECH C® for ARClite™

HI-TECH C® for XA

HI-TECH C® for Z80

HI-TECH C® for H8/300

HI-TECH C® for 68HC11

95.qxp 8/9/2006 2:12 PM Page 1

http://www.htsoft.com/downloads/demos.php
http://www.htsoft.com

96 Issue 198 January 2007 CIRCUIT CELLAR® www.circuitcellar.com

For all the computing power available today, it’s ironic that the ability to archive information for the long term was accomplished better at the advent of the print-
ing age hundreds of years ago than it is today. I’m discovering, and perhaps you are too, that there are some real downsides to our fast-moving technology.

Recently, I was digging through my old article archives and I had an interesting revelation.The real Circuit Cellar at my house is the ultimate archive (some
affectionately call it the museum). It’s truly not as messy as I humorously alluded, but it is definitely full of history since the hardware on the shelves spans 40
years of technology. The last time I was digging through some of the piles I even found a couple 8008 processors along with some Raytheon CK722 transis-
tors from the late ’60s. More importantly, I actually discovered an original printed 8008 processor manual in the pile.

As for the old articles, they were all in file folders that contained the printed manuscripts, 35-mm picture slides, BYTE author proofs, and the original Word
Star files on 5″ or 8″ floppy disks. Interestingly, I also found the folder for the first issue of Circuit Cellar back in 1987, and it was a similar story. The folder
contained a few floppy disks (I haven’t a clue which word processor it was), some slides, and a pile of printed article proofs.The irony of all of this is that while
the history of my endeavors are always tuned to presenting the latest technology, today I have to actually use the oldest and least sophisticated technology
if I want to see what I said back then. I have no computer or software system in the Circuit Cellar that can read these old disks.

In fact, if I hadn’t already transferred things to newer-generation storage, apparently I wouldn’t be able to electronically view any original medium much
more than about 10 years old. If it weren’t for the printed magazines and developed photographs in these folders, it would all be useless landfill.

Digital archiving is a complex process and a significant problem. It’s one thing to save the physical disks, tapes, and drives that hold your data, but you
also need to make sure those media are compatible with the hardware and the software of the future in order to recover them. Unlike raw language on a sim-
ple piece of paper that requires only raw intelligence to decipher, digital stuff is always encoded and formatted such that both media-specific hardware and
unique decoding software are necessary to render it in a form that we can see. If the hardware to read it or the software to decrypt it becomes obsolete, we’re
in a whole lot of trouble.

Media obsolescence isn’t a new phenomenon. It just seems that the changes from an analog to a digital world have made extending the life of an archive
into an exceedingly more complex problem.Throughout the past, preserving information for posterity was simply a matter of physical storage—stashing pho-
tographs and printed documents in a secure place. As we have evolved to a digital life, where incompatible coding from generation to generation seems to
be the norm rather than the exception, long-term non-obsolescent data retention requires us to keep massaging the old data into each new technology.Unless
someone invents the ultimate hardware/software emulator, people better be shrink-wrapping laser disk players, old PCs, CD players, and whatever for future
use if they aren’t converting files and restoring them periodically. That, or throw it all away when the old hardware deep-sixes itself.

The problem is even greater in business and government. Historically, these entities have created vast paper trails memorializing everything from orders
for paper clips to specification documents on every item in the inventory and even the menus served at board meetings. In the 1980s, computers replaced
typing pools and file clerks. Carbon copies were gradually replaced by perishable e-mails, cryptic PowerPoint slides, and transient web sites that could be
deleted instantly. Worse yet, think about schematic programs and CAD systems. Are you still using the same programs you used 10 years ago, or are the
files from those older programs compatible with the ones you use today? It’s one thing to update files from old piles of PC floppies to a DVD. It’s quite anoth-
er to make sure that you can even print the schematic of a design you did 10 years ago with today’s software.

I don’t have a good answer for this dilemma other than to say that we may be a generation with no history to share with future generations if we don’t
solve it. Our history will simply evaporate. Apparently, we don’t care about the hundred laser disks we discard when purchasing a new networked HDTV sys-
tem because we either purchase the same moves again on DVD or “subscribe” to a commercial audio/video provider who maintains the real audio/movie/TV
archive and simply transmits these materials in a format compatible with our latest hardware iteration. And, I suppose we don’t care about finding a 10-year-
old schematic because the hardware is already obsolete.

If I sold CD-ROMs for a living, I’d be pointing out the availability of gold-plated CD-ROMs that guarantee a 25-year retention rather than describing all this
doom and gloom. Of course, no one can guarantee that we’ll even have a CD-ROM reader on any computer 25 years from now any more than he could have
predicted 8-GB USB flash drives half the size of a car key 10 years ago. It’s pretty much safe to say that storage technology, and the necessity to keep mov-
ing archives to updated media, will remain dynamic.The bad news is that unless we eventually have some nonproprietary formats that everyone uses or can
emulate all past data coding formats, we’re still destined to lose most of it to obsolete software.

In the meantime, here at Circuit Cellar, we’ll just keep plugging along with one foot in each world. For the people who think that reading Circuit Cellar on
their cell phone display is fun, we’ll continue to have an electronic version. For the rest of us who like the idea that someone might look at a printed copy of
Circuit Cellar 200 years from now and know exactly who we are, we’ll stick with some paper and ink, too.

For Want of a Paper Trail

PPRRIIOORRIITTYY IINNTTEERRRRUUPPTT

steve.ciarcia@circuitcellar.com

by Steve Ciarcia, Founder and Editorial Director

steve_198_editorial.qxp 12/5/2006 12:24 PM Page 96

mailto:steve.ciarcia@circuitcellar.com
http://www.circuitcellar.com

C3.qxp 8/9/2006 2:19 PM Page 1

http://www.tech-tools.com

cations

Power Requirements 500 µA/MIPS @ 3.3 volts DC

External Clock Speed DC to 80 MHz (4 MHz to 8 MHz
with clock PLL running)

Internal RC Oscillator 12 MHz or 20 kHz

System Clock Speed DC to 80 MHz

COGs 8

Performance 20 MIPS per COG @ 80 MHz

Global RAM/ROM 32 KB RAM / 32 KB ROM

Processor RAM 512 x 32 per COG

I/O Pins 32

Current Source/Sink per I/O 30 mA

c4.qxp 11/30/2006 9:59 AM Page 1

http://www.parallax.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings true
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1000
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [792.000 1224.000]
>> setpagedevice

